BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 33864814)

  • 1. SAGA and SAGA-like SLIK transcriptional coactivators are structurally and biochemically equivalent.
    Adamus K; Reboul C; Voss J; Huang C; Schittenhelm RB; Le SN; Ellisdon AM; Elmlund H; Boudes M; Elmlund D
    J Biol Chem; 2021; 296():100671. PubMed ID: 33864814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the deubiquitination module within the SAGA complex.
    Durand A; Bonnet J; Fournier M; Chavant V; Schultz P
    Structure; 2014 Nov; 22(11):1553-9. PubMed ID: 25441028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the transcription coactivator SAGA.
    Wang H; Dienemann C; Stützer A; Urlaub H; Cheung ACM; Cramer P
    Nature; 2020 Jan; 577(7792):717-720. PubMed ID: 31969703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Pep4p as the protease responsible for formation of the SAGA-related SLIK protein complex.
    Spedale G; Mischerikow N; Heck AJ; Timmers HT; Pijnappel WW
    J Biol Chem; 2010 Jul; 285(30):22793-9. PubMed ID: 20498363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-terminal processing of yeast Spt7 occurs in the absence of functional SAGA complex.
    Hoke SM; Liang G; Mutiu AI; Genereaux J; Brandl CJ
    BMC Biochem; 2007 Aug; 8():16. PubMed ID: 17686179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway.
    Pray-Grant MG; Schieltz D; McMahon SJ; Wood JM; Kennedy EL; Cook RG; Workman JL; Yates JR; Grant PA
    Mol Cell Biol; 2002 Dec; 22(24):8774-86. PubMed ID: 12446794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex.
    Han Y; Luo J; Ranish J; Hahn S
    EMBO J; 2014 Nov; 33(21):2534-46. PubMed ID: 25216679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-terminus of the Sgf73 subunit of SAGA and SLIK is important for retention in the larger complex and for heterochromatin boundary function.
    Kamata K; Hatanaka A; Goswami G; Shinmyozu K; Nakayama J; Urano T; Hatashita M; Uchida H; Oki M
    Genes Cells; 2013 Sep; 18(9):823-37. PubMed ID: 23819448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo.
    Govind CK; Yoon S; Qiu H; Govind S; Hinnebusch AG
    Mol Cell Biol; 2005 Jul; 25(13):5626-38. PubMed ID: 15964818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters.
    Belotserkovskaya R; Sterner DE; Deng M; Sayre MH; Lieberman PM; Berger SL
    Mol Cell Biol; 2000 Jan; 20(2):634-47. PubMed ID: 10611242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SAGA binds TBP via its Spt8 subunit in competition with DNA: implications for TBP recruitment.
    Sermwittayawong D; Tan S
    EMBO J; 2006 Aug; 25(16):3791-800. PubMed ID: 16888622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational flexibility and subunit arrangement of the modular yeast Spt-Ada-Gcn5 acetyltransferase complex.
    Setiaputra D; Ross JD; Lu S; Cheng DT; Dong MQ; Yip CK
    J Biol Chem; 2015 Apr; 290(16):10057-70. PubMed ID: 25713136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SALSA, a variant of yeast SAGA, contains truncated Spt7, which correlates with activated transcription.
    Sterner DE; Belotserkovskaya R; Berger SL
    Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11622-7. PubMed ID: 12186975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation.
    Pray-Grant MG; Daniel JA; Schieltz D; Yates JR; Grant PA
    Nature; 2005 Jan; 433(7024):434-8. PubMed ID: 15647753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Spt7 function in the Saccharomyces cerevisiae SAGA coactivator complex.
    Wu PY; Winston F
    Mol Cell Biol; 2002 Aug; 22(15):5367-79. PubMed ID: 12101232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo.
    Bhaumik SR; Green MR
    Mol Cell Biol; 2002 Nov; 22(21):7365-71. PubMed ID: 12370284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction.
    Sterner DE; Grant PA; Roberts SM; Duggan LJ; Belotserkovskaya R; Pacella LA; Winston F; Workman JL; Berger SL
    Mol Cell Biol; 1999 Jan; 19(1):86-98. PubMed ID: 9858534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenovirus E1A requires the yeast SAGA histone acetyltransferase complex and associates with SAGA components Gcn5 and Tra1.
    Kulesza CA; Van Buskirk HA; Cole MD; Reese JC; Smith MM; Engel DA
    Oncogene; 2002 Feb; 21(9):1411-22. PubMed ID: 11857084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Pseudokinase Domain of
    Berg MD; Genereaux J; Karagiannis J; Brandl CJ
    G3 (Bethesda); 2018 May; 8(6):1943-1957. PubMed ID: 29626083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4.
    Larschan E; Winston F
    Genes Dev; 2001 Aug; 15(15):1946-56. PubMed ID: 11485989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.