These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 33865064)

  • 1. Improved outcome prediction of oropharyngeal cancer by combining clinical and MRI features in machine learning models.
    Bos P; van den Brekel MWM; Gouw ZAR; Al-Mamgani A; Taghavi M; Waktola S; Aerts HJWL; Castelijns JA; Beets-Tan RGH; Jasperse B
    Eur J Radiol; 2021 Jun; 139():109701. PubMed ID: 33865064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple delineations cannot substitute full 3d tumor delineations for MR-based radiomics prediction of locoregional control in oropharyngeal cancer.
    Bos P; van den Brekel MWM; Taghavi M; Gouw ZAR; Al-Mamgani A; Waktola S; Aerts HJWL; Beets-Tan RGH; Castelijns JA; Jasperse B
    Eur J Radiol; 2022 Mar; 148():110167. PubMed ID: 35086005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical variables and magnetic resonance imaging-based radiomics predict human papillomavirus status of oropharyngeal cancer.
    Bos P; van den Brekel MWM; Gouw ZAR; Al-Mamgani A; Waktola S; Aerts HJWL; Beets-Tan RGH; Castelijns JA; Jasperse B
    Head Neck; 2021 Feb; 43(2):485-495. PubMed ID: 33029923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance imaging based radiomics prediction of Human Papillomavirus infection status and overall survival in oropharyngeal squamous cell carcinoma.
    Boot PA; Mes SW; de Bloeme CM; Martens RM; Leemans CR; Boellaard R; van de Wiel MA; de Graaf P
    Oral Oncol; 2023 Feb; 137():106307. PubMed ID: 36657208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Based Radiomic HPV Phenotyping of Oropharyngeal SCC: A Feasibility Study Using MRI.
    Sohn B; Choi YS; Ahn SS; Kim H; Han K; Lee SK; Kim J
    Laryngoscope; 2021 Mar; 131(3):E851-E856. PubMed ID: 33070337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Outcome prediction of head and neck squamous cell carcinoma by MRI radiomic signatures.
    Mes SW; van Velden FHP; Peltenburg B; Peeters CFW; Te Beest DE; van de Wiel MA; Mekke J; Mulder DC; Martens RM; Castelijns JA; Pameijer FA; de Bree R; Boellaard R; Leemans CR; Brakenhoff RH; de Graaf P
    Eur Radiol; 2020 Nov; 30(11):6311-6321. PubMed ID: 32500196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oropharyngeal squamous cell carcinoma: radiomic machine-learning classifiers from multiparametric MR images for determination of HPV infection status.
    Suh CH; Lee KH; Choi YJ; Chung SR; Baek JH; Lee JH; Yun J; Ham S; Kim N
    Sci Rep; 2020 Oct; 10(1):17525. PubMed ID: 33067484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparametric MRI-based radiomics model for predicting human papillomavirus status in oropharyngeal squamous cell carcinoma: optimization using oversampling and machine learning techniques.
    Sim Y; Kim M; Kim J; Lee SK; Han K; Sohn B
    Eur Radiol; 2024 May; 34(5):3102-3112. PubMed ID: 37848774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External validation of an MR-based radiomic model predictive of locoregional control in oropharyngeal cancer.
    Bos P; Martens RM; de Graaf P; Jasperse B; van Griethuysen JJM; Boellaard R; Leemans CR; Beets-Tan RGH; van de Wiel MA; van den Brekel MWM; Castelijns JA
    Eur Radiol; 2023 Apr; 33(4):2850-2860. PubMed ID: 36460924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Largest diameter delineations can substitute 3D tumor volume delineations for radiomics prediction of human papillomavirus status on MRI's of oropharyngeal cancer.
    Bos P; van den Brekel MWM; Taghavi M; Gouw ZAR; Al-Mamgani A; Waktola S; J W L Aerts H; Beets-Tan RGH; Castelijns JA; Jasperse B
    Phys Med; 2022 Sep; 101():36-43. PubMed ID: 35882094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the need for a replan in oropharyngeal cancer: A radiomic, clinical, and dosimetric model.
    Chinnery TA; Lang P; Nichols AC; Mattonen SA
    Med Phys; 2024 May; 51(5):3510-3520. PubMed ID: 38100260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of
    Haider SP; Zeevi T; Sharaf K; Gross M; Mahajan A; Kann BH; Judson BL; Prasad ML; Burtness B; Aboian M; Canis M; Reichel CA; Baumeister P; Payabvash S
    J Nucl Med; 2024 May; 65(5):803-809. PubMed ID: 38514087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer.
    Abdollahi H; Mofid B; Shiri I; Razzaghdoust A; Saadipoor A; Mahdavi A; Galandooz HM; Mahdavi SR
    Radiol Med; 2019 Jun; 124(6):555-567. PubMed ID: 30607868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CT-based deep multi-label learning prediction model for outcome in patients with oropharyngeal squamous cell carcinoma.
    Ma B; Guo J; Zhai TT; van der Schaaf A; Steenbakkers RJHM; van Dijk LV; Both S; Langendijk JA; Zhang W; Qiu B; van Ooijen PMA; Sijtsema NM
    Med Phys; 2023 Oct; 50(10):6190-6200. PubMed ID: 37219816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical note: On the development of an outcome-driven frequency filter for improving radiomics-based modeling of human papillomavirus (HPV) in patients with oropharyngeal squamous cell carcinoma.
    Bagher-Ebadian H; Zhu S; Siddiqui F; Lu M; Movsas B; Chetty IJ
    Med Phys; 2021 Nov; 48(11):7552-7562. PubMed ID: 34390003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning and magnetic resonance imaging radiomics for predicting human papilloma virus status and prognostic factors in oropharyngeal squamous cell carcinoma.
    Park YM; Lim JY; Koh YW; Kim SH; Choi EC
    Head Neck; 2022 Apr; 44(4):897-903. PubMed ID: 35044020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomics outperforms clinical factors in characterizing human papilloma virus (HPV) for patients with oropharyngeal squamous cell carcinomas.
    Bagher-Ebadian H; Siddiqui F; Ghanem AI; Zhu S; Lu M; Movsas B; Chetty IJ
    Biomed Phys Eng Express; 2022 Jun; 8(4):. PubMed ID: 34781281
    [No Abstract]   [Full Text] [Related]  

  • 18. Using clinical and radiomic feature-based machine learning models to predict pathological complete response in patients with esophageal squamous cell carcinoma receiving neoadjuvant chemoradiation.
    Wang J; Zhu X; Zeng J; Liu C; Shen W; Sun X; Lin Q; Fang J; Chen Q; Ji Y
    Eur Radiol; 2023 Dec; 33(12):8554-8563. PubMed ID: 37439939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of quantitative MRI-based radiomic features with prognostic factors and recurrence rate in oropharyngeal squamous cell carcinoma.
    Giannitto C; Marvaso G; Botta F; Raimondi S; Alterio D; Ciardo D; Volpe S; De Piano F; Ancona E; Tagliabue M; Origgi D; Chiocca S; Maffini FA; Ansarin M; Bagnardi V; Cattani F; Nolè F; Preda L; Orecchia R; Cassano E; Cremonesi M; Starzyńska A; Bellomi M; Jereczek-Fossa BA
    Neoplasma; 2020 Nov; 67(6):1437-1446. PubMed ID: 32787435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying multisequence MRI radiomics of the primary tumor and lymph node to predict HPV-related p16 status in patients with oropharyngeal squamous cell carcinoma.
    Li Q; Xu T; Gong J; Xiang S; Shen C; Zhou X; Hu C; Wu B; Lu X
    Quant Imaging Med Surg; 2023 Apr; 13(4):2234-2247. PubMed ID: 37064405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.