These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3386510)

  • 1. Vertical and radial motions of the body during the take-off phase of high jumping.
    Dapena J; Chung CS
    Med Sci Sports Exerc; 1988 Jun; 20(3):290-302. PubMed ID: 3386510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force-, power-, and elasticity-velocity relationships in walking, running, and jumping.
    Luhtanen P; Komi PV
    Eur J Appl Physiol Occup Physiol; 1980; 44(3):279-89. PubMed ID: 7190922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of preactivity and eccentric muscle activity on concentric performance during vertical jumping.
    McBride JM; McCaulley GO; Cormie P
    J Strength Cond Res; 2008 May; 22(3):750-7. PubMed ID: 18438244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immediate effects of the use of modified take-off boards on the take-off motion of the long jump during training.
    Koyama H; Muraki Y; Ae M
    Sports Biomech; 2006 Jul; 5(2):139-53. PubMed ID: 16939149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical power and segmental contribution to force impulses in long jump take-off.
    Luhtanen P; Komi PV
    Eur J Appl Physiol Occup Physiol; 1979 Aug; 41(4):267-74. PubMed ID: 499190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle Contributions to Take-Off Velocity in the Long Jump.
    Yang K; Tang WT; Liu SH; Pandy MG
    Med Sci Sports Exerc; 2023 Aug; 55(8):1434-1444. PubMed ID: 36989530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of the take-off leg as a support mechanism in the long jump.
    Muraki Y; Ae M; Yokozawa T; Koyama H
    Sports Biomech; 2005 Jan; 4(1):1-15. PubMed ID: 15807373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical strategy of triple jump: differences of inverted pendulum model between hop-dominated and balance techniques.
    Fujibayashi N; Otsuka M; Yoshioka S; Isaka T
    J Sports Med Phys Fitness; 2018 Dec; 58(12):1741-1751. PubMed ID: 29072033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in muscle-tendon length during the take-off of a running long jump.
    Hay JG; Thorson EM; Kippenhan BC
    J Sports Sci; 1999 Feb; 17(2):159-72. PubMed ID: 10069273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical analysis of standing long jump from varying starting positions.
    Mackala K; Stodółka J; Siemienski A; Coh M
    J Strength Cond Res; 2013 Oct; 27(10):2674-84. PubMed ID: 22652918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic differences of two volleyball jumping techniques.
    Coutts KD
    Med Sci Sports Exerc; 1982; 14(1):57-9. PubMed ID: 7070259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy and variability of leg velocities during concentric and eccentric actions of the quadriceps femoris muscles.
    Gajdosik RL; Faris DW; Kato TK; Roosa PF; Matsumoto T
    Percept Mot Skills; 1997 Apr; 84(2):575-86. PubMed ID: 9106851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling and jumping: gravity loses grip on small jumpers.
    Scholz MN; Bobbert MF; Knoek van Soest AJ
    J Theor Biol; 2006 Jun; 240(4):554-61. PubMed ID: 16332377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in take-off leg kinetics between horizontal and vertical single-leg rebound jumps.
    Kariyama Y; Hobara H; Zushi K
    Sports Biomech; 2017 Jun; 16(2):187-200. PubMed ID: 27593193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pelvic elevation induces vertical kinetic energy without losing horizontal energy during running single-leg jump for distance.
    Sado N; Yoshioka S; Fukashiro S
    Eur J Sport Sci; 2023 Jul; 23(7):1146-1154. PubMed ID: 35465845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of lower limb kinetics, kinematics and muscle activation during drop jumping under shod and barefoot conditions.
    Koyama K; Yamauchi J
    J Biomech; 2018 Mar; 69():47-53. PubMed ID: 29397998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Touch-down and take-off characteristics of the long jump performance of world level above- and below-knee amputee athletes.
    Nolan L; Lees A
    Ergonomics; 2000 Oct; 43(10):1637-50. PubMed ID: 11083143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Take-off aerodynamics in ski jumping.
    Virmavirta M; Kivekäs J; Komi PV
    J Biomech; 2001 Apr; 34(4):465-70. PubMed ID: 11266669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interpretation of relative momentum data to assess the contribution of the free limbs to the generation of vertical velocity in sports activities.
    Lees A; Barton G
    J Sports Sci; 1996 Dec; 14(6):503-11. PubMed ID: 8981289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical effects of fatigue during continuous hurdle jumping.
    Viitasalo JT; Hämäläinen K; Mononen HV; Salo A; Lahtinen J
    J Sports Sci; 1993 Dec; 11(6):503-9. PubMed ID: 8114175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.