These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 33865106)
1. Bioleaching of vanadium by Acidithiobacillus ferrooxidans from vanadium-bearing resources: Performance and mechanisms. Li J; Zhang B; Yang M; Lin H J Hazard Mater; 2021 Aug; 416():125843. PubMed ID: 33865106 [TBL] [Abstract][Full Text] [Related]
2. Bioleaching performance of vanadium-bearing smelting ash by Acidithiobacillus ferrooxidans for vanadium recovery. Guo X; Chen S; Han Y; Hao C; Feng X; Zhang B J Environ Manage; 2023 Jun; 336():117615. PubMed ID: 36893541 [TBL] [Abstract][Full Text] [Related]
3. Enhanced effect of biochar on leaching vanadium and copper from stone coal tailings by Thiobacillus ferrooxidans. Dong Y; Chong S; Lin H Environ Sci Pollut Res Int; 2022 Mar; 29(14):20398-20408. PubMed ID: 34738215 [TBL] [Abstract][Full Text] [Related]
4. Bioleaching of rare-earth elements from phosphate rock using Acidithiobacillus ferrooxidans. Tian Y; Hu X; Song X; Yang AJ Lett Appl Microbiol; 2022 Nov; 75(5):1111-1121. PubMed ID: 35611559 [TBL] [Abstract][Full Text] [Related]
5. Enhanced bioleaching of spent Li-ion batteries using A. ferrooxidans by application of external magnetic field. Kim J; Nwe HH; Yoon CS J Environ Manage; 2024 Sep; 367():122012. PubMed ID: 39094417 [TBL] [Abstract][Full Text] [Related]
6. Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant. Hocheng H; Su C; Jadhav UU Chemosphere; 2014 Dec; 117():652-7. PubMed ID: 25461931 [TBL] [Abstract][Full Text] [Related]
7. Vanadium extraction from steel slag: Generation, recycling and management. Yang MQ; Yang JY Environ Pollut; 2024 Feb; 343():123126. PubMed ID: 38092336 [TBL] [Abstract][Full Text] [Related]
8. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans. Makita M; Esperón M; Pereyra B; López A; Orrantia E BMC Biotechnol; 2004 Oct; 4():22. PubMed ID: 15482595 [TBL] [Abstract][Full Text] [Related]
9. Bioleaching of zinc and iron from steel plant waste using Acidithiobacillus ferrooxidans. Bayat O; Sever E; Bayat B; Arslan V; Poole C Appl Biochem Biotechnol; 2009 Jan; 152(1):117-26. PubMed ID: 18581266 [TBL] [Abstract][Full Text] [Related]
10. Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans. Mikoda B; Potysz A; Kmiecik E J Environ Manage; 2019 Apr; 236():436-445. PubMed ID: 30769253 [TBL] [Abstract][Full Text] [Related]
11. Bioleaching of tellurium from mine tailings by indigenous Acidithiobacillus ferrooxidans. Zhan Y; Shen X; Chen M; Yang K; Xie H Lett Appl Microbiol; 2022 Nov; 75(5):1076-1083. PubMed ID: 34586632 [TBL] [Abstract][Full Text] [Related]
12. Cr and Ni recovery during bioleaching of dewatered metal-plating sludge using Acidithiobacillus ferrooxidans. Rastegar SO; Mousavi SM; Shojaosadati SA Bioresour Technol; 2014 Sep; 167():61-8. PubMed ID: 24971945 [TBL] [Abstract][Full Text] [Related]
13. Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans. Chen S; Yang Y; Liu C; Dong F; Liu B Chemosphere; 2015 Dec; 141():162-8. PubMed ID: 26196406 [TBL] [Abstract][Full Text] [Related]
14. Bioleaching in batch tests for improving sludge dewaterability and metal removal using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans after cold acclimation. Zhou Q; Gao J; Li Y; Zhu S; He L; Nie W; Zhang R Water Sci Technol; 2017 Sep; 76(5-6):1347-1359. PubMed ID: 28953461 [TBL] [Abstract][Full Text] [Related]
15. Exploring the role of extracellular polymeric substances in the antimony leaching of tailings by Acidithiobacillus ferrooxidans. Song X; Yang A; Hu X; Niu AP; Cao Y; Zhang Q Environ Sci Pollut Res Int; 2023 Feb; 30(7):17695-17708. PubMed ID: 36203043 [TBL] [Abstract][Full Text] [Related]
16. Reduction of vanadium(V) with Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Bredberg K; Karlsson HT; Holst O Bioresour Technol; 2004 Mar; 92(1):93-6. PubMed ID: 14643991 [TBL] [Abstract][Full Text] [Related]
17. Leaching of vanadium from waste V Wang S; Xie Y; Yan W; Wu X; Wang CT; Zhao F Sci Total Environ; 2018 Oct; 639():497-503. PubMed ID: 29800843 [TBL] [Abstract][Full Text] [Related]
18. Sequential biological process for molybdenum extraction from hydrodesulphurization spent catalyst. Vyas S; Ting YP Chemosphere; 2016 Oct; 160():7-12. PubMed ID: 27351900 [TBL] [Abstract][Full Text] [Related]
19. Optimization of kinetics and operating parameters for the bioleaching of heavy metals from sewage sludge, using co-inoculation of two Acidithiobacillus species. Li H; Ye M; Zheng L; Xu Y; Sun S; Du Q; Zhong Y; Ye S; Zhang D Water Sci Technol; 2018 May; 2017(2):390-403. PubMed ID: 29851391 [TBL] [Abstract][Full Text] [Related]
20. Bioleaching of iron from laterite soil using an isolated Acidithiobacillus ferrooxidans strain and application of leached laterite iron as Fenton's catalyst in selective herbicide degradation. S B; Manu B; M Y S PLoS One; 2021; 16(3):e0243444. PubMed ID: 33784303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]