These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33865154)

  • 21. Transformation of Silver Nanoparticles in Sewage Sludge during Incineration.
    Meier C; Voegelin A; Pradas del Real A; Sarret G; Mueller CR; Kaegi R
    Environ Sci Technol; 2016 Apr; 50(7):3503-10. PubMed ID: 26840361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC).
    Kleemann R; Chenoweth J; Clift R; Morse S; Pearce P; Saroj D
    Waste Manag; 2017 Feb; 60():201-210. PubMed ID: 27979424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Volatility and partitioning of Cd and Pb during sewage sludge thermal conversion.
    Zhang YF; Zhang SY; Mao Q; Li H; Wang CW; Jiang FH; Lyu JF
    Waste Manag; 2018 May; 75():333-339. PubMed ID: 29433900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comprehensive evaluation of sewage sludge anaerobic digestion process with different digestate treatments.
    Zhang X; Wang Z; Peng X; Xiao J; Wu Q; Chen X
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):56303-56316. PubMed ID: 36917383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-disposal of incineration fly ash and sewage sludge via hydrothermal treatment combined with pyrolysis: Cl removal and PCDD/F detoxification.
    Chen Z; Yu G; Zou X; Wang Y
    Chemosphere; 2020 Dec; 260():127632. PubMed ID: 32693261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis.
    Liu T; Liu Z; Zheng Q; Lang Q; Xia Y; Peng N; Gai C
    Bioresour Technol; 2018 Jan; 247():282-290. PubMed ID: 28950137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fate of heavy metals during co-disposal of municipal solid waste incineration fly ash and sewage sludge by hydrothermal coupling pyrolysis process.
    Chen Z; Yu G; Wang Y; Wang X
    Waste Manag; 2020 May; 109():28-37. PubMed ID: 32380379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sustainable disposal of excess sludge: Incineration without anaerobic digestion.
    Hao X; Chen Q; van Loosdrecht MCM; Li J; Jiang H
    Water Res; 2020 Mar; 170():115298. PubMed ID: 31751893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrothermal carbonization of pulp and paper industry wastewater treatment sludges - characterization and potential use of hydrochars and filtrates.
    Hämäläinen A; Kokko M; Kinnunen V; Hilli T; Rintala J
    Bioresour Technol; 2022 Jul; 355():127258. PubMed ID: 35526710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrothermal carbonization of centrifuged sewage sludge: Determination of resource recovery from liquid fraction and thermal behaviour of hydrochar.
    Malhotra M; Garg A
    Waste Manag; 2020 Nov; 117():114-123. PubMed ID: 32823076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of sewage sludge incineration ash as a potential land reclamation material.
    Lin WY; Ng WC; Wong BSE; Teo SL; Sivananthan GD; Baeg GH; Ok YS; Wang CH
    J Hazard Mater; 2018 Sep; 357():63-72. PubMed ID: 29864689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Life cycle sustainability assessment of advanced treatment techniques for urban wastewater reuse and sewage sludge resource recovery.
    Tarpani RRZ; Azapagic A
    Sci Total Environ; 2023 Apr; 869():161771. PubMed ID: 36702269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From wastewater to fertilizer products: Alternative paths to mitigate phosphorus demand in European countries.
    Santos AF; Almeida PV; Alvarenga P; Gando-Ferreira LM; Quina MJ
    Chemosphere; 2021 Dec; 284():131258. PubMed ID: 34225107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sewage sludge ash (SSA) from large and small incineration plants as a potential source of phosphorus - Polish case study.
    Smol M; Kulczycka J; Kowalski Z
    J Environ Manage; 2016 Dec; 184(Pt 3):617-628. PubMed ID: 27789088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermochemical treatment of sewage sludge ashes for phosphorus recovery.
    Adam C; Peplinski B; Michaelis M; Kley G; Simon FG
    Waste Manag; 2009 Mar; 29(3):1122-8. PubMed ID: 19036571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy and nutrient recovery from sewage sludge via pyrolysis.
    Bridle TR; Pritchard D
    Water Sci Technol; 2004; 50(9):169-75. PubMed ID: 15581009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow analysis of major and trace elements in residues from large-scale sewage sludge incineration.
    Yu S; Zhang H; Lü F; Shao L; He P
    J Environ Sci (China); 2021 Apr; 102():99-109. PubMed ID: 33637269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recirculating treated sewage sludge for agricultural use: Life cycle assessment for a circular economy.
    Aleisa E; Alsulaili A; Almuzaini Y
    Waste Manag; 2021 Nov; 135():79-89. PubMed ID: 34478951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Benchmarking environmental and economic indicators of sludge management alternatives aimed at enhanced energy efficiency and nutrient recovery.
    Arias A; Feijoo G; Moreira MT
    J Environ Manage; 2021 Feb; 279():111594. PubMed ID: 33160744
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Form1ation and destruction of chlorinated pollutants during sewage sludge incineration.
    Fullana A; Conesa JA; Font R; Sidhu S
    Environ Sci Technol; 2004 May; 38(10):2953-8. PubMed ID: 15212273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.