These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 33865154)
21. Recovery potential of German sewage sludge ash. Krüger O; Adam C Waste Manag; 2015 Nov; 45():400-6. PubMed ID: 25697389 [TBL] [Abstract][Full Text] [Related]
22. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. Havukainen J; Nguyen MT; Hermann L; Horttanainen M; Mikkilä M; Deviatkin I; Linnanen L Waste Manag; 2016 Mar; 49():221-229. PubMed ID: 26810030 [TBL] [Abstract][Full Text] [Related]
23. Environmental, energy, and economic impact assessment of sludge management alternatives based on incineration. Xiao H; Li K; Zhang D; Tang Z; Niu X; Yi L; Lin Z; Fu M J Environ Manage; 2022 Nov; 321():115848. PubMed ID: 35987051 [TBL] [Abstract][Full Text] [Related]
24. Life-cycle assessment of two sewage sludge-to-energy systems based on different sewage sludge characteristics: Energy balance and greenhouse gas-emission footprint analysis. Chen R; Yuan S; Chen S; Ci H; Dai X; Wang X; Li C; Wang D; Dong B J Environ Sci (China); 2022 Jan; 111():380-391. PubMed ID: 34949367 [TBL] [Abstract][Full Text] [Related]
25. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Mills N; Pearce P; Farrow J; Thorpe RB; Kirkby NF Waste Manag; 2014 Jan; 34(1):185-95. PubMed ID: 24060290 [TBL] [Abstract][Full Text] [Related]
26. Transformation of Silver Nanoparticles in Sewage Sludge during Incineration. Meier C; Voegelin A; Pradas del Real A; Sarret G; Mueller CR; Kaegi R Environ Sci Technol; 2016 Apr; 50(7):3503-10. PubMed ID: 26840361 [TBL] [Abstract][Full Text] [Related]
28. Volatility and partitioning of Cd and Pb during sewage sludge thermal conversion. Zhang YF; Zhang SY; Mao Q; Li H; Wang CW; Jiang FH; Lyu JF Waste Manag; 2018 May; 75():333-339. PubMed ID: 29433900 [TBL] [Abstract][Full Text] [Related]
29. Comprehensive evaluation of sewage sludge anaerobic digestion process with different digestate treatments. Zhang X; Wang Z; Peng X; Xiao J; Wu Q; Chen X Environ Sci Pollut Res Int; 2023 Apr; 30(19):56303-56316. PubMed ID: 36917383 [TBL] [Abstract][Full Text] [Related]
30. Co-disposal of incineration fly ash and sewage sludge via hydrothermal treatment combined with pyrolysis: Cl removal and PCDD/F detoxification. Chen Z; Yu G; Zou X; Wang Y Chemosphere; 2020 Dec; 260():127632. PubMed ID: 32693261 [TBL] [Abstract][Full Text] [Related]
31. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis. Liu T; Liu Z; Zheng Q; Lang Q; Xia Y; Peng N; Gai C Bioresour Technol; 2018 Jan; 247():282-290. PubMed ID: 28950137 [TBL] [Abstract][Full Text] [Related]
32. Fate of heavy metals during co-disposal of municipal solid waste incineration fly ash and sewage sludge by hydrothermal coupling pyrolysis process. Chen Z; Yu G; Wang Y; Wang X Waste Manag; 2020 May; 109():28-37. PubMed ID: 32380379 [TBL] [Abstract][Full Text] [Related]
33. Sustainable disposal of excess sludge: Incineration without anaerobic digestion. Hao X; Chen Q; van Loosdrecht MCM; Li J; Jiang H Water Res; 2020 Mar; 170():115298. PubMed ID: 31751893 [TBL] [Abstract][Full Text] [Related]
34. Hydrothermal carbonization of pulp and paper industry wastewater treatment sludges - characterization and potential use of hydrochars and filtrates. Hämäläinen A; Kokko M; Kinnunen V; Hilli T; Rintala J Bioresour Technol; 2022 Jul; 355():127258. PubMed ID: 35526710 [TBL] [Abstract][Full Text] [Related]
35. Hydrothermal carbonization of centrifuged sewage sludge: Determination of resource recovery from liquid fraction and thermal behaviour of hydrochar. Malhotra M; Garg A Waste Manag; 2020 Nov; 117():114-123. PubMed ID: 32823076 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of sewage sludge incineration ash as a potential land reclamation material. Lin WY; Ng WC; Wong BSE; Teo SL; Sivananthan GD; Baeg GH; Ok YS; Wang CH J Hazard Mater; 2018 Sep; 357():63-72. PubMed ID: 29864689 [TBL] [Abstract][Full Text] [Related]
37. Life cycle sustainability assessment of advanced treatment techniques for urban wastewater reuse and sewage sludge resource recovery. Tarpani RRZ; Azapagic A Sci Total Environ; 2023 Apr; 869():161771. PubMed ID: 36702269 [TBL] [Abstract][Full Text] [Related]
38. From wastewater to fertilizer products: Alternative paths to mitigate phosphorus demand in European countries. Santos AF; Almeida PV; Alvarenga P; Gando-Ferreira LM; Quina MJ Chemosphere; 2021 Dec; 284():131258. PubMed ID: 34225107 [TBL] [Abstract][Full Text] [Related]
39. Sewage sludge ash (SSA) from large and small incineration plants as a potential source of phosphorus - Polish case study. Smol M; Kulczycka J; Kowalski Z J Environ Manage; 2016 Dec; 184(Pt 3):617-628. PubMed ID: 27789088 [TBL] [Abstract][Full Text] [Related]
40. Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Adam C; Peplinski B; Michaelis M; Kley G; Simon FG Waste Manag; 2009 Mar; 29(3):1122-8. PubMed ID: 19036571 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]