BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33865209)

  • 1. Design of artificial metalloenzymes for the reduction of nicotinamide cofactors.
    Basle M; Padley HAW; Martins FL; Winkler GS; Jäger CM; Pordea A
    J Inorg Biochem; 2021 Jul; 220():111446. PubMed ID: 33865209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computationally driven design of an artificial metalloenzyme using supramolecular anchoring strategies of iridium complexes to alcohol dehydrogenase.
    Martins FL; Pordea A; Jäger CM
    Faraday Discuss; 2022 May; 234(0):315-335. PubMed ID: 35156975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocatalyst-artificial metalloenzyme cascade based on alcohol dehydrogenase.
    Morra S; Pordea A
    Chem Sci; 2018 Oct; 9(38):7447-7454. PubMed ID: 30319745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5'-methyl phosphate, with in situ generated [CpRh(Bpy)H](+): structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives.
    Lo HC; Leiva C; Buriez O; Kerr JB; Olmstead MM; Fish RH
    Inorg Chem; 2001 Dec; 40(26):6705-16. PubMed ID: 11735482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
    Oohora K; Onoda A; Hayashi T
    Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).
    Malver O; Sebastian MJ; Oppenheimer NJ
    DNA Repair (Amst); 2014 Nov; 23():95-100. PubMed ID: 25280628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic recycling of NAD(P)H.
    Fukuzumi S; Lee YM; Nam W
    J Inorg Biochem; 2019 Oct; 199():110777. PubMed ID: 31376683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

  • 9. Active site modifications in a double mutant of liver alcohol dehydrogenase: structural studies of two enzyme-ligand complexes.
    Colby TD; Bahnson BJ; Chin JK; Klinman JP; Goldstein BM
    Biochemistry; 1998 Jun; 37(26):9295-304. PubMed ID: 9649310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renewable dehydrogenase-based interfaces for bioelectronic applications.
    Hassler BL; Kohli N; Zeikus JG; Lee I; Worden RM
    Langmuir; 2007 Jun; 23(13):7127-33. PubMed ID: 17503864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.
    Stiti N; Chandrasekar B; Strubl L; Mohammed S; Bartels D; van der Hoorn RA
    ACS Chem Biol; 2016 Jun; 11(6):1578-86. PubMed ID: 26990764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LmrR: A Privileged Scaffold for Artificial Metalloenzymes.
    Roelfes G
    Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the cofactor specificity of an alcohol dehydrogenase via single mutations or insertions distal to the 2'-phosphate group of NADP(H).
    Solanki K; Abdallah W; Banta S
    Protein Eng Des Sel; 2017 May; 30(5):373-380. PubMed ID: 28201792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA aptamers that bind flavin and nicotinamide redox cofactors.
    Lauhon CT; Szostak JW
    J Am Chem Soc; 1995 Feb; 117(4):1246-57. PubMed ID: 11539282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting artificial nicotinamide cofactor systems.
    Zachos I; Güner S; Essert A; Lommes P; Sieber V
    Chem Commun (Camb); 2022 Oct; 58(85):11945-11948. PubMed ID: 36200889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic mechanism in artificial metalloenzyme: QM/MM study of phenylacetylene polymerization by rhodium complex encapsulated in apo-Ferritin.
    Ke Z; Abe S; Ueno T; Morokuma K
    J Am Chem Soc; 2012 Sep; 134(37):15418-29. PubMed ID: 22967436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ternary complexes of liver alcohol dehydrogenase.
    Pocker Y; Page JD; Li H; Bhat CC
    Chem Biol Interact; 2001 Jan; 130-132(1-3):371-81. PubMed ID: 11306059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
    Ward TR
    Acc Chem Res; 2011 Jan; 44(1):47-57. PubMed ID: 20949947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic-resolution structures of horse liver alcohol dehydrogenase with NAD(+) and fluoroalcohols define strained Michaelis complexes.
    Plapp BV; Ramaswamy S
    Biochemistry; 2012 May; 51(19):4035-48. PubMed ID: 22531044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.