These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3386522)

  • 1. Saturation and inversion transfer studies of creatine kinase kinetics in rabbit skeletal muscle in vivo.
    Hsieh PS; Balaban RS
    Magn Reson Med; 1988 May; 7(1):56-64. PubMed ID: 3386522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance.
    Gadian DG; Radda GK; Brown TR; Chance EM; Dawson MJ; Wilkie DR
    Biochem J; 1981 Jan; 194(1):215-28. PubMed ID: 6975619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of inversion spin transfer to monitor creatine kinase kinetics in rat skeletal muscle in vivo.
    Haseler LJ; Brooks WM; Irving MG; Bulliman BT; Kuchel PW; Doddrell DM
    Biochem Int; 1986 Apr; 12(4):613-8. PubMed ID: 3718523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro determination of creatine kinase substrate fluxes using 31P-nuclear magnetic resonance.
    Conrad A; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1995 Jan; 1243(1):117-23. PubMed ID: 7827099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 31P magnetization transfer studies of creatine kinase kinetics in living rabbit brain.
    Degani H; Alger JR; Shulman RG; Petroff OA; Prichard JW
    Magn Reson Med; 1987 Jul; 5(1):1-12. PubMed ID: 3657491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of creatine kinase during steady-state isometric twitch contraction in rat skeletal muscle.
    Shoubridge EA; Bland JL; Radda GK
    Biochim Biophys Acta; 1984 Sep; 805(1):72-8. PubMed ID: 6477973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creatine kinase activity in rat skeletal muscle with intermittent tetanic stimulation.
    Le Rumeur E; Le Moyec L; de Certaines JD
    Magn Reson Med; 1992 Apr; 24(2):335-42. PubMed ID: 1569871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pH and inorganic phosphate on creatine kinase inactivation: an in vitro 31P NMR saturation-transfer study.
    Williams GD; Enders B; Smith MB
    Biochem Int; 1992 Feb; 26(1):35-42. PubMed ID: 1616495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of exchange in the reaction catalysed by creatine kinase using 14C and 15N isotope labels and the NMR technique of saturation transfer.
    Brindle KM; Radda GK
    Biochim Biophys Acta; 1985 Jun; 829(2):188-201. PubMed ID: 3995051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer.
    Zahler R; Bittl JA; Ingwall JS
    Biophys J; 1987 Jun; 51(6):883-93. PubMed ID: 3607210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of anaerobic metabolic changes on the creatine kinase reaction in frog muscle studied by 31P saturation transfer NMR.
    Yoshizaki K; Nishikawa H; Naruse S
    NMR Biomed; 1991 Feb; 4(1):25-30. PubMed ID: 2029457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of creatine kinase in heart: a 31P NMR saturation- and inversion-transfer study.
    Degani H; Laughlin M; Campbell S; Shulman RG
    Biochemistry; 1985 Sep; 24(20):5510-6. PubMed ID: 4074712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rate equation for creatine kinase predicts the in vivo reaction velocity: 31P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat.
    Bittl JA; DeLayre J; Ingwall JS
    Biochemistry; 1987 Sep; 26(19):6083-90. PubMed ID: 3689762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correctly accounting for radiofrequency spillover in saturation transfer experiments: application to measurement of the creatine kinase reaction rate in human forearm muscle.
    Horská A; Spencer GS
    MAGMA; 1997 Jun; 5(2):159-63. PubMed ID: 9268080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo functioning of creatine phosphokinase in human forearm muscle, studied by 31P NMR saturation transfer.
    Rees D; Smith MB; Harley J; Radda GK
    Magn Reson Med; 1989 Jan; 9(1):39-52. PubMed ID: 2709995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study.
    Bittl JA; Ingwall JS
    J Biol Chem; 1985 Mar; 260(6):3512-7. PubMed ID: 3972835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1H- and 31P-NMR studies on smooth muscle of bullfrog stomach.
    Yoshizaki K; Radda GK; Inubushi T; Chance B
    Biochim Biophys Acta; 1987 Apr; 928(1):36-44. PubMed ID: 3493810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.
    Weiss K; Bottomley PA; Weiss RG
    NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 31P NMR of enzyme-bound substrates of rabbit muscle creatine kinase. Equilibrium constants, interconversion rates, and NMR parameters of enzyme-bound complexes.
    Nageswara Rao BD; Cohn M
    J Biol Chem; 1981 Feb; 256(4):1716-21. PubMed ID: 7462219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 31P saturation transfer spectroscopy predicts differential intracellular macromolecular association of ATP and ADP in skeletal muscle.
    Nabuurs C; Huijbregts B; Wieringa B; Hilbers CW; Heerschap A
    J Biol Chem; 2010 Dec; 285(51):39588-96. PubMed ID: 20884612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.