BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 33865436)

  • 21. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.
    Florencio C; Cunha FM; Badino AC; Farinas CS; Ximenes E; Ladisch MR
    Enzyme Microb Technol; 2016 Aug; 90():53-60. PubMed ID: 27241292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lignocellulose hydrolytic enzymes production by
    Namnuch N; Thammasittirong A; Thammasittirong SN
    Mycology; 2020 Aug; 12(2):119-127. PubMed ID: 34026303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass.
    Borin GP; Sanchez CC; de Souza AP; de Santana ES; de Souza AT; Paes Leme AF; Squina FM; Buckeridge M; Goldman GH; Oliveira JV
    PLoS One; 2015; 10(6):e0129275. PubMed ID: 26053961
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Scott CJR; McGregor NGS; Leadbeater DR; Oates NC; Hoßbach J; Abood A; Setchfield A; Dowle A; Overkleeft HS; Davies GJ; Bruce NC
    Microbiol Spectr; 2024 May; ():e0394323. PubMed ID: 38757984
    [No Abstract]   [Full Text] [Related]  

  • 25. Secretomic insight into the biomass hydrolysis potential of the phytopathogenic fungus Chrysoporthe cubensis.
    Tavares MP; Morgan T; Gomes RF; Rodrigues MQRB; Castro-Borges W; de Rezende ST; de Oliveira Mendes TA; Guimarães VM
    J Proteomics; 2021 Mar; 236():104121. PubMed ID: 33540065
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupling Secretomics with Enzyme Activities To Compare the Temporal Processes of Wood Metabolism among White and Brown Rot Fungi.
    Presley GN; Panisko E; Purvine SO; Schilling JS
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29884760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative analysis of Chrysoporthe cubensis exoproteomes and their specificity for saccharification of sugarcane bagasse.
    Tavares MP; Morgan T; Gomes RF; Mendes JPR; Castro-Borges W; Maitan-Alfenas GP; Guimarães VM
    Enzyme Microb Technol; 2024 Feb; 173():110365. PubMed ID: 38043248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptome and Secretome Analyses of the Wood Decay Fungus Wolfiporia cocos Support Alternative Mechanisms of Lignocellulose Conversion.
    Gaskell J; Blanchette RA; Stewart PE; BonDurant SS; Adams M; Sabat G; Kersten P; Cullen D
    Appl Environ Microbiol; 2016 Jul; 82(13):3979-3987. PubMed ID: 27107121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The integrative omics of white-rot fungus Pycnoporus coccineus reveals co-regulated CAZymes for orchestrated lignocellulose breakdown.
    Miyauchi S; Navarro D; Grisel S; Chevret D; Berrin JG; Rosso MN
    PLoS One; 2017; 12(4):e0175528. PubMed ID: 28394946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of the Enzymatic Arsenal Secreted by
    Grieco MAB; Haon M; Grisel S; de Oliveira-Carvalho AL; Magalhães AV; Zingali RB; Pereira N; Berrin JG
    Front Bioeng Biotechnol; 2020; 8():1028. PubMed ID: 32984289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome description of Phlebia radiata 79 with comparative genomics analysis on lignocellulose decomposition machinery of phlebioid fungi.
    Mäkinen M; Kuuskeri J; Laine P; Smolander OP; Kovalchuk A; Zeng Z; Asiegbu FO; Paulin L; Auvinen P; Lundell T
    BMC Genomics; 2019 May; 20(1):430. PubMed ID: 31138126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic identification of CAZymes and transcription factors in the hypercellulolytic fungus Penicillium funiculosum NCIM1228 involved in lignocellulosic biomass degradation.
    Pasari N; Gupta M; Sinha T; Ogunmolu FE; Yazdani SS
    Biotechnol Biofuels Bioprod; 2023 Oct; 16(1):150. PubMed ID: 37794424
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies.
    Alessi AM; Bird SM; Oates NC; Li Y; Dowle AA; Novotny EH; deAzevedo ER; Bennett JP; Polikarpov I; Young JPW; McQueen-Mason SJ; Bruce NC
    Biotechnol Biofuels; 2018; 11():166. PubMed ID: 29946357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose.
    Kuuskeri J; Häkkinen M; Laine P; Smolander OP; Tamene F; Miettinen S; Nousiainen P; Kemell M; Auvinen P; Lundell T
    Biotechnol Biofuels; 2016; 9(1):192. PubMed ID: 27602055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into the genome and secretome of Fusarium metavorans DSM105788 by cultivation on agro-residual biomass and synthetic nutrient sources.
    Brandt SC; Brognaro H; Ali A; Ellinger B; Maibach K; Rühl M; Wrenger C; Schlüter H; Schäfer W; Betzel C; Janssen S; Gand M
    Biotechnol Biofuels; 2021 Mar; 14(1):74. PubMed ID: 33743779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene Co-expression Network Reveals Potential New Genes Related to Sugarcane Bagasse Degradation in
    Borin GP; Carazzolle MF; Dos Santos RAC; Riaño-Pachón DM; Oliveira JVC
    Front Bioeng Biotechnol; 2018; 6():151. PubMed ID: 30406095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 2G ethanol from the whole sugarcane lignocellulosic biomass.
    Pereira SC; Maehara L; Machado CM; Farinas CS
    Biotechnol Biofuels; 2015; 8():44. PubMed ID: 25774217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalis involves successive secretion of oxidative and hydrolytic enzymes.
    Navarro D; Rosso MN; Haon M; Olivé C; Bonnin E; Lesage-Meessen L; Chevret D; Coutinho PM; Henrissat B; Berrin JG
    Biotechnol Biofuels; 2014; 7(1):143. PubMed ID: 25320637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse.
    de Souza WR; Maitan-Alfenas GP; de Gouvêa PF; Brown NA; Savoldi M; Battaglia E; Goldman MH; de Vries RP; Goldman GH
    Fungal Genet Biol; 2013 Nov; 60():29-45. PubMed ID: 23892063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse.
    de Souza WR; de Gouvea PF; Savoldi M; Malavazi I; de Souza Bernardes LA; Goldman MHS; de Vries RP; de Castro Oliveira JV; Goldman GH
    Biotechnol Biofuels; 2011 Oct; 4():40. PubMed ID: 22008461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.