These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3386585)

  • 1. Theoretical optimization of a split septaless xenon ionization detector for dual-energy chest radiography.
    Cardinal HN; Fenster A
    Med Phys; 1988; 15(2):167-80. PubMed ID: 3386585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A xenon ionization detector for scanned projection radiography: theoretical considerations.
    Rutt BK; Drost DJ; Fenster A
    Med Phys; 1983; 10(3):284-92. PubMed ID: 6877174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A framework for optimising the radiographic technique in digital X-ray imaging.
    Samei E; Dobbins JT; Lo JY; Tornai MP
    Radiat Prot Dosimetry; 2005; 114(1-3):220-9. PubMed ID: 15933112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A xenon ionization detector for scanned projection radiography: Xenon/Freon 13B1 comparison.
    Drost DJ; Mehuys D; Fenster A
    Med Phys; 1984; 11(5):610-7. PubMed ID: 6503875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of image acquisition techniques for dual-energy imaging of the chest.
    Shkumat NA; Siewerdsen JH; Dhanantwari AC; Williams DB; Richard S; Paul NS; Yorkston J; Van Metter R
    Med Phys; 2007 Oct; 34(10):3904-15. PubMed ID: 17985636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A xenon ionization detector for scanned projection radiography: 95-channel prototype evaluation.
    Drost DJ; Fenster A
    Med Phys; 1984; 11(5):602-9. PubMed ID: 6503874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of a flat-panel based real time dual-energy system for cardiac imaging.
    Ducote JL; Xu T; Molloi S
    Med Phys; 2006 Jun; 33(6):1562-8. PubMed ID: 16872063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnostic performance of a prototype dual-energy chest imaging system ROC analysis.
    Kashani H; Varon CA; Paul NS; Gang GJ; Van Metter R; Yorkston J; Siewerdsen JH
    Acad Radiol; 2010 Mar; 17(3):298-308. PubMed ID: 20042351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of dual energy detector system performance.
    Alvarez RE; Seibert JA; Thompson SK
    Med Phys; 2004 Mar; 31(3):556-65. PubMed ID: 15070254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dose on image quality in a detector-based dual-exposure, dual-energy system for chest radiography.
    Freund T; Fischbach F; Teichgraeber U; Haenninen EL; Eichstaedt H; Felix R; Ricke J
    Acta Radiol; 2005 Feb; 46(1):41-7. PubMed ID: 15841739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultralow-dose chest computed tomography for pulmonary nodule detection: first performance evaluation of single energy scanning with spectral shaping.
    Gordic S; Morsbach F; Schmidt B; Allmendinger T; Flohr T; Husarik D; Baumueller S; Raupach R; Stolzmann P; Leschka S; Frauenfelder T; Alkadhi H
    Invest Radiol; 2014 Jul; 49(7):465-73. PubMed ID: 24598443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray tube potential, filtration, and detector considerations in dual-energy chest radiography.
    Gauntt DM; Barnes GT
    Med Phys; 1994 Feb; 21(2):203-18. PubMed ID: 8177153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of real time dual-energy imaging based on a flat panel detector for coronary artery calcium quantification.
    Xu T; Ducote JL; Wong JT; Molloi S
    Med Phys; 2006 Jun; 33(6):1612-22. PubMed ID: 16872069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical evaluation of pulmonary nodules with dual-exposure dual-energy subtraction chest radiography.
    Uemura M; Miyagawa M; Yasuhara Y; Murakami T; Ikura H; Sakamoto K; Tagashira H; Arakawa K; Mochizuki T
    Radiat Med; 2005 Sep; 23(6):391-7. PubMed ID: 16389980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The x-ray light valve: a potentially low-cost, digital radiographic imaging system--a liquid crystal cell design for chest radiography.
    Szeto TC; Webster CA; Koprinarov I; Rowlands JA
    Med Phys; 2008 Mar; 35(3):959-67. PubMed ID: 18404932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detector for dual-energy digital radiography.
    Barnes GT; Sones RA; Tesic MM; Morgan DR; Sanders JN
    Radiology; 1985 Aug; 156(2):537-40. PubMed ID: 4011921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Digital radiography in thoracic diagnosis].
    Oestmann JW; Greene R
    Rofo; 1989 Apr; 150(4):465-71. PubMed ID: 2539628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Digital chest x-rays with a selenium detector: a prospective comparison with a conventional film-screen combination].
    Freund M; Reuter M; Palmié S; Harder E; Hutzelmann A; Heller M
    Rofo; 1997 Feb; 166(2):101-7. PubMed ID: 9116250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chest radiography with a digital flat-panel detector: experimental receiver operating characteristic analysis.
    Metz S; Damoser P; Hollweck R; Roggel R; Engelke C; Woertler K; Renger B; Rummeny EJ; Link TM
    Radiology; 2005 Mar; 234(3):776-84. PubMed ID: 15734933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image quality of a digital chest radiography system based on a selenium detector.
    Neitzel U; Maack I; Günther-Kohfahl S
    Med Phys; 1994 Apr; 21(4):509-16. PubMed ID: 8058016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.