BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33865866)

  • 21. CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule.
    Al-Bassam J; Kim H; Brouhard G; van Oijen A; Harrison SC; Chang F
    Dev Cell; 2010 Aug; 19(2):245-58. PubMed ID: 20708587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular interactions between tubulin tails and glutamylases reveal determinants of glutamylation patterns.
    Natarajan K; Gadadhar S; Souphron J; Magiera MM; Janke C
    EMBO Rep; 2017 Jun; 18(6):1013-1026. PubMed ID: 28483842
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A biophysical model of how α-tubulin carboxy-terminal tails tune kinesin-1 processivity along microtubule.
    Sataric MV; Sekulic DL; Zdravkovic S; Ralevic NM
    J Theor Biol; 2017 May; 420():152-157. PubMed ID: 28300595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Tubulin Code in Microtubule Dynamics and Information Encoding.
    Roll-Mecak A
    Dev Cell; 2020 Jul; 54(1):7-20. PubMed ID: 32634400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation.
    Carmona B; Marinho HS; Matos CL; Nolasco S; Soares H
    Biology (Basel); 2023 Apr; 12(4):. PubMed ID: 37106761
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The tubulin code and its role in controlling microtubule properties and functions.
    Janke C; Magiera MM
    Nat Rev Mol Cell Biol; 2020 Jun; 21(6):307-326. PubMed ID: 32107477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tubulin post-translational modifications control neuronal development and functions.
    Moutin MJ; Bosc C; Peris L; Andrieux A
    Dev Neurobiol; 2021 Apr; 81(3):253-272. PubMed ID: 33325152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct and indirect effects of tubulin post-translational modifications on microtubule stability: Insights and regulations.
    Bär J; Popp Y; Bucher M; Mikhaylova M
    Biochim Biophys Acta Mol Cell Res; 2022 Jun; 1869(6):119241. PubMed ID: 35181405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Post-translational modifications of tubulin: their role in cancers and the regulation of signaling molecules.
    Wattanathamsan O; Pongrakhananon V
    Cancer Gene Ther; 2023 Apr; 30(4):521-528. PubMed ID: 34671113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microtubule assembly governed by tubulin allosteric gain in flexibility and lattice induced fit.
    Igaev M; Grubmüller H
    Elife; 2018 Apr; 7():. PubMed ID: 29652248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular mechanisms of Tau binding to microtubules and its role in microtubule dynamics in live cells.
    Breuzard G; Hubert P; Nouar R; De Bessa T; Devred F; Barbier P; Sturgis JN; Peyrot V
    J Cell Sci; 2013 Jul; 126(Pt 13):2810-9. PubMed ID: 23659998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Post-translational modifications of tubulin: pathways to functional diversity of microtubules.
    Song Y; Brady ST
    Trends Cell Biol; 2015 Mar; 25(3):125-36. PubMed ID: 25468068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of β- and α2-adrenergic receptors stimulate tubulin polymerization and promote the association of Gβγ with microtubules in cultured NIH3T3 cells.
    Sierra-Fonseca JA; Bracamontes C; Saldecke J; Das S; Roychowdhury S
    Biochem Biophys Res Commun; 2018 Sep; 503(1):102-108. PubMed ID: 29852176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Post-translational modifications of tubulin in the nervous system.
    Fukushima N; Furuta D; Hidaka Y; Moriyama R; Tsujiuchi T
    J Neurochem; 2009 May; 109(3):683-93. PubMed ID: 19250341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular modeling study on the differential microtubule-stabilizing effect in singly- and doubly-bonded complexes with peloruside A and paclitaxel.
    Zúñiga MA; Alderete JB; Jaña GA; Navarrete KR; Jiménez VA
    Proteins; 2019 Aug; 87(8):668-678. PubMed ID: 30958582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions.
    Janke C; Bulinski JC
    Nat Rev Mol Cell Biol; 2011 Nov; 12(12):773-86. PubMed ID: 22086369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular investigations into the unfoldase action of severing enzymes on microtubules.
    Varikoti RA; Macke AC; Speck V; Ross JL; Dima RI
    Cytoskeleton (Hoboken); 2020 May; 77(5-6):214-228. PubMed ID: 32170815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microtubule instability driven by longitudinal and lateral strain propagation.
    Igaev M; Grubmüller H
    PLoS Comput Biol; 2020 Sep; 16(9):e1008132. PubMed ID: 32877399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyglutamylation and polyglycylation of alpha- and beta-tubulins during in vitro ciliated cell differentiation of human respiratory epithelial cells.
    Million K; Larcher J; Laoukili J; Bourguignon D; Marano F; Tournier F
    J Cell Sci; 1999 Dec; 112 ( Pt 23)():4357-66. PubMed ID: 10564653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How cells exploit tubulin diversity to build functional cellular microtubule mosaics.
    Roll-Mecak A
    Curr Opin Cell Biol; 2019 Feb; 56():102-108. PubMed ID: 30466050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.