These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 33865914)
1. Downregulation of glob1 suppresses pathogenesis of human neuronal tauopathies in Drosophila by regulating tau phosphorylation and ROS generation. Nisha ; Sarkar S Neurochem Int; 2021 Jun; 146():105040. PubMed ID: 33865914 [TBL] [Abstract][Full Text] [Related]
2. Downregulation of glob1 mitigates human tau mediated neurotoxicity by restricting heterochromatin loss and elevating the autophagic response in drosophila. Nisha ; Sarkar S Mol Biol Rep; 2022 Jul; 49(7):6581-6590. PubMed ID: 35633418 [TBL] [Abstract][Full Text] [Related]
3. Targeted Downregulation of dMyc Suppresses Pathogenesis of Human Neuronal Tauopathies in Drosophila by Limiting Heterochromatin Relaxation and Tau Hyperphosphorylation. Chanu SI; Sarkar S Mol Neurobiol; 2017 May; 54(4):2706-2719. PubMed ID: 27000837 [TBL] [Abstract][Full Text] [Related]
4. Reduced expression of dMyc mitigates Tau Pragati ; Chanu SI; Sarkar S Neurosci Lett; 2020 Jan; 715():134622. PubMed ID: 31715291 [TBL] [Abstract][Full Text] [Related]
5. Targeted downregulation of dMyc restricts neurofibrillary tangles mediated pathogenesis of human neuronal tauopathies in Drosophila. Chanu SI; Sarkar S Biochim Biophys Acta Mol Basis Dis; 2017 Sep; 1863(9):2111-2119. PubMed ID: 28529046 [TBL] [Abstract][Full Text] [Related]
6. Shaggy functions downstream of dMyc and their concurrent downregulation confers additive rescue against tau toxicity in Drosophila. Pragati ; Sarkar S Biofactors; 2021 May; 47(3):461-477. PubMed ID: 33651466 [TBL] [Abstract][Full Text] [Related]
7. Drosophila models of human tauopathies indicate that Tau protein toxicity in vivo is mediated by soluble cytosolic phosphorylated forms of the protein. Feuillette S; Miguel L; Frébourg T; Campion D; Lecourtois M J Neurochem; 2010 May; 113(4):895-903. PubMed ID: 20193038 [TBL] [Abstract][Full Text] [Related]
8. Reinstated Activity of Human Tau-induced Enhanced Insulin Signaling Restricts Disease Pathogenesis by Regulating the Functioning of Kinases/Phosphatases and Tau Hyperphosphorylation in Drosophila. Pragati ; Sarkar S Mol Neurobiol; 2024 Feb; 61(2):982-1001. PubMed ID: 37674037 [TBL] [Abstract][Full Text] [Related]
9. Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models. Hannan SB; Dräger NM; Rasse TM; Voigt A; Jahn TR J Neurochem; 2016 Apr; 137(1):12-25. PubMed ID: 26756400 [TBL] [Abstract][Full Text] [Related]
10. A comparison of the neuronal dysfunction caused by Drosophila tau and human tau in a Drosophila model of tauopathies. Ubhi KK; Shaibah H; Newman TA; Shepherd D; Mudher A Invert Neurosci; 2007 Sep; 7(3):165-71. PubMed ID: 17636367 [TBL] [Abstract][Full Text] [Related]
11. Tau Protein and Zebrafish Models for Tau-Induced Neurodegeneration. Ding Y; Lei L; Lai C; Tang Z J Alzheimers Dis; 2019; 69(2):339-353. PubMed ID: 31006683 [TBL] [Abstract][Full Text] [Related]
12. Kinesin-1 transport reductions enhance human tau hyperphosphorylation, aggregation and neurodegeneration in animal models of tauopathies. Falzone TL; Gunawardena S; McCleary D; Reis GF; Goldstein LS Hum Mol Genet; 2010 Nov; 19(22):4399-408. PubMed ID: 20817925 [TBL] [Abstract][Full Text] [Related]
13. Genetic reduction of tyramine β hydroxylase suppresses Tau toxicity in a Drosophila model of tauopathy. Nangia V; O'Connell J; Chopra K; Qing Y; Reppert C; Chai CM; Bhasiin K; Colodner KJ Neurosci Lett; 2021 Jun; 755():135937. PubMed ID: 33910059 [TBL] [Abstract][Full Text] [Related]
14. Neurofibrillary tangles mediated human neuronal tauopathies: insights from fly models. Sarkar S J Genet; 2018 Jul; 97(3):783-793. PubMed ID: 30027909 [TBL] [Abstract][Full Text] [Related]
15. Mechanistic Insights into Tau Protein-Mediated Regulation of Oxidative Stress. Sethi P; C RD; Borra R; Vahora S; Vashi A; Mukherjee RK; Pavani B; Tiwari G Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2024 Oct; 40():e20240028. PubMed ID: 39379150 [TBL] [Abstract][Full Text] [Related]
16. Tau Hyperphosphorylation and Oxidative Stress, a Critical Vicious Circle in Neurodegenerative Tauopathies? Alavi Naini SM; Soussi-Yanicostas N Oxid Med Cell Longev; 2015; 2015():151979. PubMed ID: 26576216 [TBL] [Abstract][Full Text] [Related]
17. Tau phosphorylation and aggregation as a therapeutic target in tauopathies. Badiola N; Suárez-Calvet M; Lleó A CNS Neurol Disord Drug Targets; 2010 Dec; 9(6):727-40. PubMed ID: 20942789 [TBL] [Abstract][Full Text] [Related]
18. hSOD1 promotes tau phosphorylation and toxicity in the Drosophila model. Huang Y; Wu Z; Zhou B J Alzheimers Dis; 2015; 45(1):235-44. PubMed ID: 25524953 [TBL] [Abstract][Full Text] [Related]
19. NMNAT suppresses tau-induced neurodegeneration by promoting clearance of hyperphosphorylated tau oligomers in a Drosophila model of tauopathy. Ali YO; Ruan K; Zhai RG Hum Mol Genet; 2012 Jan; 21(2):237-50. PubMed ID: 21965302 [TBL] [Abstract][Full Text] [Related]
20. Misfolded tau protein and disease modifying pathways in transgenic rodent models of human tauopathies. Zilka N; Korenova M; Novak M Acta Neuropathol; 2009 Jul; 118(1):71-86. PubMed ID: 19238406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]