BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33865969)

  • 1. Discovery of a new series of PI3K-δ inhibitors from Virtual Screening.
    Fradera X; Deng Q; Achab A; Garcia Y; Kattar SD; McGowan MA; Methot JL; Wilson K; Zhou H; Shaffer L; Goldenblatt P; Tong V; Augustin MA; Altman MD; Lesburg CA; Shah S; Katz JD
    Bioorg Med Chem Lett; 2021 Jun; 42():128046. PubMed ID: 33865969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of 2-(5-(quinolin-6-yl)-1,3,4-oxadiazol-2-yl)acetamide derivatives as novel PI3Kα inhibitors via docking-based virtual screening.
    Gu D; Cheng G; Zhang M; Zhou YB; Li J; Sheng R
    Bioorg Med Chem; 2021 Jan; 29():115863. PubMed ID: 33199203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of 1,3-dihydro-2H-imidazo[4,5-c]quinolin-2-ones based novel, potent and PI3Kδ selective inhibitors.
    Bahekar R; Dave B; Soman S; Patel D; Chopade R; Funde R; Kumar J; Sachchidanand S; Giri P; Chatterjee A; Mahapatra J; Vyas P; Ghoshdastidar K; Bandyopadhyay D; Desai RC
    Bioorg Med Chem Lett; 2019 Jun; 29(11):1313-1319. PubMed ID: 30975623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery, Optimization, and Evaluation of Potent and Highly Selective PI3Kγ-PI3Kδ Dual Inhibitors.
    Jia H; Dai G; Su W; Xiao K; Weng J; Zhang Z; Wang Q; Yuan T; Shi F; Zhang Z; Chen W; Sai Y; Wang J; Li X; Cai Y; Yu J; Ren P; Venable J; Rao T; Edwards JP; Bembenek SD
    J Med Chem; 2019 May; 62(10):4936-4948. PubMed ID: 31033293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Orally Bioavailable PI3Kδ Inhibitors and Identification of Vps34 as a Key Selectivity Target.
    Henley ZA; Amour A; Barton N; Bantscheff M; Bergamini G; Bertrand SM; Convery M; Down K; Dümpelfeld B; Edwards CD; Grandi P; Gore PM; Keeling S; Livia S; Mallett D; Maxwell A; Price M; Rau C; Reinhard FBM; Rowedder J; Rowland P; Taylor JA; Thomas DA; Hessel EM; Hamblin JN
    J Med Chem; 2020 Jan; 63(2):638-655. PubMed ID: 31855425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of selective PI3Kδ inhibitors using an iterative scaffold-hopping workflow.
    Fradera X; Methot JL; Achab A; Christopher M; Altman MD; Zhou H; McGowan MA; Kattar SD; Wilson K; Garcia Y; Augustin MA; Lesburg CA; Shah S; Goldenblatt P; Katz JD
    Bioorg Med Chem Lett; 2019 Sep; 29(18):2575-2580. PubMed ID: 31416665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of cinnoline derivatives as potent PI3K inhibitors with antiproliferative activity.
    Tian C; Yang C; Wu T; Lu M; Chen Y; Yang Y; Liu X; Ling Y; Deng M; Jia Y; Zhou Y
    Bioorg Med Chem Lett; 2021 Sep; 48():128271. PubMed ID: 34284105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, synthesis, and biological evaluation of thieno[3,2-d]pyrimidine derivatives as potential simplified phosphatidylinositol 3-kinase alpha inhibitors.
    Yang X; Deng M; Zhang X; Wang Y; Song K; Cong R; Meng L; Zhang J
    Chem Biol Drug Des; 2019 Dec; 94(6):2013-2022. PubMed ID: 30381889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of novel quinazoline derivatives as potent PI3Kδ inhibitors with high selectivity.
    Teng Y; Li X; Ren S; Cheng Y; Xi K; Shen H; Ma W; Luo G; Xiang H
    Eur J Med Chem; 2020 Dec; 208():112865. PubMed ID: 32987316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and biological evaluation of novel purinyl quinazolinone derivatives as PI3Kδ-specific inhibitors for the treatment of hematologic malignancies.
    Kim YS; Cheon MG; Boggu PR; Koh SY; Park GM; Kim G; Park SH; Park SL; Lee CW; Kim JW; Jung YH
    Bioorg Med Chem; 2021 Sep; 45():116312. PubMed ID: 34332211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of 5,6,7,8-tetrahydropyrido[4,3-d]pyrimidines to generate a highly selective PI3Kδ inhibitor.
    Hamajima T; Takahashi F; Kato K; Sugano Y; Yamaki S; Suzuki D; Moritomo A; Kubo S; Nakamura K; Yamagami K; Yokoo K; Fukahori H
    Bioorg Med Chem; 2019 Mar; 27(6):1056-1064. PubMed ID: 30755348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis and structure-activity relationship study of piperazinone-containing thieno[3,2-d]pyrimidine derivatives as new PI3Kδ inhibitors.
    Wang NY; Zuo WQ; Hu R; Wang WL; Zhu YX; Xu Y; Yu LT; Liu ZH
    Bioorg Med Chem Lett; 2020 Oct; 30(20):127479. PubMed ID: 32784091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of GSK251: A Highly Potent, Highly Selective, Orally Bioavailable Inhibitor of PI3Kδ with a Novel Binding Mode.
    Down K; Amour A; Anderson NA; Barton N; Campos S; Cannons EP; Clissold C; Convery MA; Coward JJ; Doyle K; Duempelfeld B; Edwards CD; Goldsmith MD; Krause J; Mallett DN; McGonagle GA; Patel VK; Rowedder J; Rowland P; Sharpe A; Sriskantharajah S; Thomas DA; Thomson DW; Uddin S; Hamblin JN; Hessel EM
    J Med Chem; 2021 Sep; 64(18):13780-13792. PubMed ID: 34510892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of PI3Kγ and δ Inhibitors for Inflammatory and Autoimmune Diseases.
    Perry MWD; Abdulai R; Mogemark M; Petersen J; Thomas MJ; Valastro B; Westin Eriksson A
    J Med Chem; 2019 May; 62(10):4783-4814. PubMed ID: 30582813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of Novel Azaindoles as Potent and Selective PI3Kδ Inhibitors for Treatment of Multiple Sclerosis.
    Yu M; Wang X; Tang Y; Wang L; Hu X; Weng Q; Wang J; Cui S
    J Med Chem; 2024 Jun; 67(11):9628-9644. PubMed ID: 38754045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SHC014748M, a novel selective inhi-bitor of PI3Kδ, demonstrates promising preclinical antitumor activity in B cell lymphomas and chronic lymphocytic leukemia.
    Fan L; Wang C; Zhao L; Wang Z; Zhang X; Liu X; Cao L; Xu W; Li J
    Neoplasia; 2020 Dec; 22(12):714-724. PubMed ID: 33142237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioisosteric replacements of the indole moiety for the development of a potent and selective PI3Kδ inhibitor: Design, synthesis and biological evaluation.
    Yang C; Xu C; Li Z; Chen Y; Wu T; Hong H; Lu M; Jia Y; Yang Y; Liu X; Deng M; Chen Z; Li Q; Ling Y; Zhou Y
    Eur J Med Chem; 2021 Nov; 223():113661. PubMed ID: 34237636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free-Wilson Analysis of Comprehensive Data on Phosphoinositide-3-kinase (PI3K) Inhibitors Reveals Importance of
    Barnes L; Blaber H; Brooks DTK; Byers L; Buckley D; Byron ZC; Chilvers RG; Cochrane L; Cooney E; Damian HA; Francis L; Fu He D; Grace JMJ; Green HJ; Hogarth EJP; Jusu L; Killalea CE; King O; Lambert J; Lee ZJ; Lima NS; Long CL; Mackinnon ML; Mahdy S; Matthews-Wright J; Millward MJ; Meehan MF; Merrett C; Morrison L; Parke HRI; Payne C; Payne L; Pike C; Seal A; Senior AJ; Smith KM; Stanelyte K; Stillibrand J; Szpara R; Taday FFH; Threadgould AM; Trainor RJ; Waters J; Williams O; Wong CKW; Wood K; Barton N; Gruszka A; Henley Z; Rowedder JE; Cookson R; Jones KL; Nadin A; Smith IE; Macdonald SJF; Nortcliffe A
    J Med Chem; 2019 Nov; 62(22):10402-10422. PubMed ID: 31647659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of novel selective PI3Kγ inhibitors through combining machine learning-based virtual screening with multiple protein structures and bio-evaluation.
    Zhu J; Li K; Xu L; Cai Y; Chen Y; Zhao X; Li H; Huang G; Jin J
    J Adv Res; 2022 Feb; 36():1-13. PubMed ID: 35127160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics insights for PI3K-δ inhibition & structure guided identification of novel PI3K-δ inhibitors.
    Srivastava S; Singh Choudhary B; Mehta P; Sukanya ; Sharma M; Malik R
    J Biomol Struct Dyn; 2019 Jun; 37(9):2404-2414. PubMed ID: 30047836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.