These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 33866098)

  • 21. Enhanced biosorption of transition metals by living Chlorella vulgaris immobilized in Ca-alginate beads.
    Ahmad A; Bhat AH; Buang A
    Environ Technol; 2019 Jun; 40(14):1793-1809. PubMed ID: 29345546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline.
    Jiang K; Sun TH; Sun LN; Li HB
    J Environ Sci (China); 2006; 18(6):1221-5. PubMed ID: 17294969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling heavy metal removal by retention on
    Gümüş D; Gümüş F
    Int J Phytoremediation; 2020; 22(7):755-763. PubMed ID: 31916451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Equilibrium kinetics and thermodynamic studies on biosorption of heavy metals by metal-resistant strains of Trichoderma isolated from tannery solid waste.
    Mushtaq S; Bareen FE; Tayyeb A
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):10925-10954. PubMed ID: 36088439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Equilibrium, kinetic, and thermodynamic biosorption of Pb(II), Cr(III), and Cd(II) ions by dead anaerobic biomass from synthetic wastewater.
    Sulaymon AH; Ebrahim SE; Mohammed-Ridha MJ
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):175-87. PubMed ID: 22427177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosorption of heavy metals from aqueous solutions using activated sludge, Aeromasss hydrophyla, and Branhamella spp based on modeling with GEOCHEM.
    Kurniawan TA; Lo W; Othman MHD; Goh HH; Chong KK
    Environ Res; 2022 Nov; 214(Pt 4):114070. PubMed ID: 35988827
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosorptive application of defatted Laurus nobilis leaves as a waste material for treatment of water contaminated with heavy metal.
    Gümüş D
    Int J Phytoremediation; 2019; 21(6):556-563. PubMed ID: 30729808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Colocasia esculenta stem as novel biosorbent for potentially toxic metals removal from aqueous system.
    Maity S; Nanda S; Sarkar A
    Environ Sci Pollut Res Int; 2021 Nov; 28(42):58885-58901. PubMed ID: 33641096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium.
    Muñoz R; Alvarez MT; Muñoz A; Terrazas E; Guieysse B; Mattiasson B
    Chemosphere; 2006 May; 63(6):903-11. PubMed ID: 16307789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorption of heavy metals from the aqueous solution using activated biomass from Ulva flexuosa.
    R L; Rejiniemon TS; Sathya R; Kuppusamy P; Al-Mekhlafi FA; Wadaan MA; Rajendran P
    Chemosphere; 2022 Nov; 306():135479. PubMed ID: 35753418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficacy of green waste-derived biochar for lead removal from aqueous systems: Characterization, equilibrium, kinetic and application.
    Hammo MM; Akar T; Sayin F; Celik S; Akar ST
    J Environ Manage; 2021 Jul; 289():112490. PubMed ID: 33819651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass.
    Sari A; Tuzen M
    J Hazard Mater; 2009 May; 164(2-3):1004-11. PubMed ID: 18845395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immobilization of exopolymeric substances from bacteria for metal removal: A study on characterization, optimization, reusability and toxicity.
    Cheah C; Cheow YL; Yien Ting AS
    J Environ Manage; 2022 Dec; 323():116244. PubMed ID: 36116257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosorption of heavy metal ions from aqueous solution by red macroalgae.
    Ibrahim WM
    J Hazard Mater; 2011 Sep; 192(3):1827-35. PubMed ID: 21798665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effective adsorptive removal of Zn
    Abuhatab S; El-Qanni A; Al-Qalaq H; Hmoudah M; Al-Zerei W
    J Environ Manage; 2020 Aug; 268():110713. PubMed ID: 32510447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating the adsorption of Shanghai silty clay to Cd(II), Pb(II), As(V), and Cr(VI): kinetic, equilibrium, and thermodynamic studies.
    Wang J; Zhang W
    Environ Monit Assess; 2021 Feb; 193(3):131. PubMed ID: 33590376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.--a comparative study.
    Gupta VK; Rastogi A
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):170-8. PubMed ID: 18321684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass.
    Bulgariu D; Bulgariu L
    Bioresour Technol; 2012 Jan; 103(1):489-93. PubMed ID: 22055103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling and efficiency evaluation of the continuous biosorption of Cu(II) and Cr(VI) from water by agricultural waste materials.
    Blagojev N; Vasić V; Kukić D; Šćiban M; Prodanović J; Bera O
    J Environ Manage; 2021 Mar; 281():111876. PubMed ID: 33418386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Natural seaweed waste as sorbent for heavy metal removal from solution.
    Ahmady-Asbchin S; Andres Y; Gerente C; Le Cloirec P
    Environ Technol; 2009 Jun; 30(7):755-62. PubMed ID: 19705613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.