These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33866254)

  • 1. Human stress classification during public speaking using physiological signals.
    Arsalan A; Majid M
    Comput Biol Med; 2021 Jun; 133():104377. PubMed ID: 33866254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of Perceived Human Stress using Physiological Signals.
    Arsalan A; Majid M; Anwar SM; Bagci U
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1247-1250. PubMed ID: 31946118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological Sensors Based Emotion Recognition While Experiencing Tactile Enhanced Multimedia.
    Raheel A; Majid M; Alnowami M; Anwar SM
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eliminating Individual Bias to Improve Stress Detection from Multimodal Physiological Data.
    Das D; Datta S; Bhattacharjee T; Choudhury AD; Pal A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5753-5758. PubMed ID: 30441643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Shrewd Artificial Neural Network-Based Hybrid Model for Pervasive Stress Detection of Students Using Galvanic Skin Response and Electrocardiogram Signals.
    Tiwari S; Agarwal S
    Big Data; 2021 Dec; 9(6):427-442. PubMed ID: 34851743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Effective Entropy-Assisted Mind-Wandering Detection System Using EEG Signals of MM-SART Database.
    Chen YT; Lee HH; Shih CY; Chen ZL; Beh WK; Yeh SL; Wu AY
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3649-3660. PubMed ID: 35767497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of Perceived Mental Stress Using A Commercially Available EEG Headband.
    Arsalan A; Majid M; Butt AR; Anwar SM
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2257-2264. PubMed ID: 31283515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of gait intention from pre-movement EEG signals: a feasibility study.
    Shafiul Hasan SM; Siddiquee MR; Atri R; Ramon R; Marquez JS; Bai O
    J Neuroeng Rehabil; 2020 Apr; 17(1):50. PubMed ID: 32299460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Exploration of Machine Learning Methods for Robust Boredom Classification Using EEG and GSR Data.
    Seo J; Laine TH; Sohn KA
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Objective stress monitoring based on wearable sensors in everyday settings.
    Han HJ; Labbaf S; Borelli JL; Dutt N; Rahmani AM
    J Med Eng Technol; 2020 May; 44(4):177-189. PubMed ID: 32589065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution.
    Alazrai R; Homoud R; Alwanni H; Daoud MI
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of physiological signals for recognition of boredom, pain, and surprise emotions.
    Jang EH; Park BJ; Park MS; Kim SH; Sohn JH
    J Physiol Anthropol; 2015 Jun; 34(1):25. PubMed ID: 26084816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting Physiological Responses Using Multimodal Earbud Sensors.
    Rahman MM; Xu X; Nathan V; Ahmed T; Ahmed MY; McCaffrey D; Kuang J; Cowell T; Moore J; Mendes WB; Gao JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1-5. PubMed ID: 36085850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Emotion Recognition Based on Multiple Physiological Signals].
    Chen S; Zhang L; Jiang F; Chen W; Miao J; Chen H
    Zhongguo Yi Liao Qi Xie Za Zhi; 2020 Apr; 44(4):283-287. PubMed ID: 32762198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement and identification of mental workload during simulated computer tasks with multimodal methods and machine learning.
    Ding Y; Cao Y; Duffy VG; Wang Y; Zhang X
    Ergonomics; 2020 Jul; 63(7):896-908. PubMed ID: 32330080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable Driver Distraction Identification On-The-Road via Continuous Decomposition of Galvanic Skin Responses.
    Dehzangi O; Rajendra V; Taherisadr M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29414902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns.
    Liao SC; Wu CT; Huang HC; Cheng WT; Liu YH
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28613237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CNN and LSTM-Based Emotion Charting Using Physiological Signals.
    Dar MN; Akram MU; Khawaja SG; Pujari AN
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexity-based decoding of brain-skin relation in response to olfactory stimuli.
    Omam S; Babini MH; Sim S; Tee R; Nathan V; Namazi H
    Comput Methods Programs Biomed; 2020 Feb; 184():105293. PubMed ID: 31887618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on the effects of traditional and olfaction enhanced multimedia on pleasantness classification based on brain activity analysis.
    Raheel A; Majid M; Anwar SM
    Comput Biol Med; 2019 Nov; 114():103469. PubMed ID: 31581027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.