These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33866304)

  • 1. Deep joint learning for language recognition.
    Li L; Li Z; Liu Y; Hong Q
    Neural Netw; 2021 Sep; 141():72-86. PubMed ID: 33866304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks.
    Beguš G
    Neural Netw; 2021 Jul; 139():305-325. PubMed ID: 33873122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-native acoustic modeling for mispronunciation verification based on language adversarial representation learning.
    Yang L; Fu K; Zhang J; Shinozaki T
    Neural Netw; 2021 Oct; 142():597-607. PubMed ID: 34388438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Level Representation Learning for Chinese Medical Entity Recognition: Model Development and Validation.
    Zhang Z; Zhu L; Yu P
    JMIR Med Inform; 2020 May; 8(5):e17637. PubMed ID: 32364514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of multicollinearity on CAPT modalities: An heterogeneous machine learning framework for computer-assisted French phoneme pronunciation training.
    Bi Y; Li C; Benezeth Y; Yang F
    PLoS One; 2021; 16(10):e0257901. PubMed ID: 34662367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speaker recognition based on deep learning: An overview.
    Bai Z; Zhang XL
    Neural Netw; 2021 Aug; 140():65-99. PubMed ID: 33744714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Deep-Learning Method with Channel Attention Mechanism for Underwater Target Recognition.
    Xue L; Zeng X; Jin A
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35897996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perceptual development of phoneme contrasts: how sensitivity changes along acoustic dimensions that contrast phoneme categories.
    Heeren WF; Schouten ME
    J Acoust Soc Am; 2008 Oct; 124(4):2291-302. PubMed ID: 19062867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-MONA: A dilated mixed-order non-local attention network for speaker and language recognition.
    Miao X; McLoughlin I; Wang W; Zhang P
    Neural Netw; 2021 Jul; 139():201-211. PubMed ID: 33780726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Deep Learning Method Using Gender-Specific Features for Emotion Recognition.
    Zhang LM; Li Y; Zhang YT; Ng GW; Leau YB; Yan H
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Task Transformer with Adaptive Cross-Entropy Loss for Multi-Dialect Speech Recognition.
    Dan Z; Zhao Y; Bi X; Wu L; Ji Q
    Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-Corpus Speech Emotion Recognition Based on Multi-Task Learning and Subdomain Adaptation.
    Fu H; Zhuang Z; Wang Y; Huang C; Duan W
    Entropy (Basel); 2023 Jan; 25(1):. PubMed ID: 36673265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting entities with attributes in clinical text via joint deep learning.
    Shi X; Yi Y; Xiong Y; Tang B; Chen Q; Wang X; Ji Z; Zhang Y; Xu H
    J Am Med Inform Assoc; 2019 Dec; 26(12):1584-1591. PubMed ID: 31550346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep convolutional neural network to simultaneously localize and recognize waste types in images.
    Liang S; Gu Y
    Waste Manag; 2021 May; 126():247-257. PubMed ID: 33780704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep bottleneck features for spoken language identification.
    Jiang B; Song Y; Wei S; Liu JH; McLoughlin IV; Dai LR
    PLoS One; 2014; 9(7):e100795. PubMed ID: 24983963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic scene classification based on three-dimensional multi-channel feature-correlated deep learning networks.
    Qu Y; Li X; Qin Z; Lu Q
    Sci Rep; 2022 Aug; 12(1):13730. PubMed ID: 35962021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Unified Framework for Multilingual Speech Recognition in Air Traffic Control Systems.
    Lin Y; Guo D; Zhang J; Chen Z; Yang B
    IEEE Trans Neural Netw Learn Syst; 2021 Aug; 32(8):3608-3620. PubMed ID: 32833649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting drug-drug interactions using multi-modal deep auto-encoders based network embedding and positive-unlabeled learning.
    Zhang Y; Qiu Y; Cui Y; Liu S; Zhang W
    Methods; 2020 Jul; 179():37-46. PubMed ID: 32497603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.