BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33866501)

  • 1. Mechanism insight into the role of clay particles on enhancing phosphate removal by ferrate compared with ferric salt.
    Li W; Ouyang F; An G; Yang C; Zhong R; Xiao F; Peng D; Wang D
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):45414-45421. PubMed ID: 33866501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of inorganic ions and natural organic matter on arsenates removal by ferrate(VI): Understanding a complex effect of phosphates ions.
    Kolařík J; Prucek R; Tuček J; Filip J; Sharma VK; Zbořil R
    Water Res; 2018 Sep; 141():357-365. PubMed ID: 29804022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The variation of flocs activity during floc breakage and aging, adsorbing phosphate, humic acid and clay particles.
    Wu M; Yu W; Qu J; Gregory J
    Water Res; 2019 May; 155():131-141. PubMed ID: 30844674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coagulation behavior and floc characteristics of a novel composite poly-ferric aluminum chloride-polydimethyl diallylammonium chloride coagulant with different OH/(Fe
    Sun C; Qiu J; Zhang Z; Marhaba TF; Zhang Y
    Water Sci Technol; 2016 Oct; 74(7):1636-1643. PubMed ID: 27763344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles.
    Kralchevska RP; Prucek R; Kolařík J; Tuček J; Machala L; Filip J; Sharma VK; Zbořil R
    Water Res; 2016 Oct; 103():83-91. PubMed ID: 27438903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation and coagulation of humic substances by potassium ferrate.
    Graham NJ; Khoi TT; Jiang JQ
    Water Sci Technol; 2010; 62(4):929-36. PubMed ID: 20729598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferrate self-decomposition in water is also a self-activation process: Role of Fe(V) species and enhancement with Fe(III) in methyl phenyl sulfoxide oxidation by excess ferrate.
    Huang ZS; Wang L; Liu YL; Zhang HY; Zhao XN; Bai Y; Ma J
    Water Res; 2021 Jun; 197():117094. PubMed ID: 33836297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of ferrate oxidation on natural organic matter and disinfection byproduct precursors.
    Jiang Y; Goodwill JE; Tobiason JE; Reckhow DA
    Water Res; 2016 Jun; 96():114-25. PubMed ID: 27038382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Phosphate on Ferrate Oxidation of Organic Compounds: An Underestimated Oxidant.
    Huang ZS; Wang L; Liu YL; Jiang J; Xue M; Xu CB; Zhen YF; Wang YC; Ma J
    Environ Sci Technol; 2018 Dec; 52(23):13897-13907. PubMed ID: 30379540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of cytotoxicity and DNA double-strand break effects of wastewater by ferrate(VI): Roles of oxidation and coagulation.
    Wu QY; Lu XS; Feng MB; Wang WL; Du Y; Yang LL; Hu HY
    Water Res; 2021 Oct; 205():117667. PubMed ID: 34547698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling the mechanism of imidacloprid removal by ferrate(VI): Kinetics, role of oxidation and adsorption, reaction pathway and toxicity assessment.
    Wang K; Shu J; Sharma VK; Liu C; Xu X; Nesnas N; Wang H
    Sci Total Environ; 2022 Jan; 805():150383. PubMed ID: 34818785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Settleability and characteristics of ferrate(VI)-induced particles in advanced wastewater treatment.
    Zheng L; Deng Y
    Water Res; 2016 Apr; 93():172-178. PubMed ID: 26900976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Addressing harmful algal blooms (HABs) impacts with ferrate(VI): Simultaneous removal of algal cells and toxins for drinking water treatment.
    Deng Y; Wu M; Zhang H; Zheng L; Acosta Y; Hsu TD
    Chemosphere; 2017 Nov; 186():757-761. PubMed ID: 28822256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of particles from ferrate preoxidation.
    Goodwill JE; Jiang Y; Reckhow DA; Gikonyo J; Tobiason JE
    Environ Sci Technol; 2015 Apr; 49(8):4955-62. PubMed ID: 25803182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of integrated ferrate-polyaluminum chloride coagulation as a treatment technology for removing freshwater humic substances.
    Amano M; Lohwacharin J; Dubechot A; Takizawa S
    J Environ Manage; 2018 Apr; 212():323-331. PubMed ID: 29453117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Ferrate(IV) and Ferrate(V) in Activating Ferrate(VI) by Calcium Sulfite for Enhanced Oxidation of Organic Contaminants.
    Shao B; Dong H; Sun B; Guan X
    Environ Sci Technol; 2019 Jan; 53(2):894-902. PubMed ID: 30570262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferrate (Fe(VI)) application for Municipal wastewater treatment: a novel process for simultaneous micropollutant oxidation and phosphate removal.
    Lee Y; Zimmermann SG; Kieu AT; Von Gunten U
    Environ Sci Technol; 2009 May; 43(10):3831-8. PubMed ID: 19544895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of different solutes, natural organic matter, and particulate Fe(III) on ferrate(VI) decomposition in aqueous solutions.
    Jiang Y; Goodwill JE; Tobiason JE; Reckhow DA
    Environ Sci Technol; 2015 Mar; 49(5):2841-8. PubMed ID: 25629296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium ferrate combined with ultrafiltration for treating secondary effluent: Efficient removal of antibiotic resistance genes and membrane fouling alleviation.
    Yang B; Wen Q; Chen Z; Tang Y
    Water Res; 2022 Jun; 217():118374. PubMed ID: 35398806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferrate(VI) as a greener oxidant: Electrochemical generation and treatment of phenol.
    Sun X; Zhang Q; Liang H; Ying L; Xiangxu M; Sharma VK
    J Hazard Mater; 2016 Dec; 319():130-6. PubMed ID: 26738940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.