These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 33866940)
21. Force-Velocity-Power Profiling During Weighted-Vest Sprinting in Soccer. Carlos-Vivas J; Marín-Cascales E; Freitas TT; Perez-Gomez J; Alcaraz PE Int J Sports Physiol Perform; 2019 Jul; 14(6):747–756. PubMed ID: 30427229 [No Abstract] [Full Text] [Related]
22. Association of Sprint Performance With Ground Reaction Forces During Acceleration and Maximal Speed Phases in a Single Sprint. Nagahara R; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T J Appl Biomech; 2018 Apr; 34(2):104-110. PubMed ID: 28952906 [TBL] [Abstract][Full Text] [Related]
23. Kinematic and kinetic differences in block and split-stance standing starts during 30 m sprint-running. Macadam P; Nuell S; Cronin JB; Nagahara R; Uthoff AM; Graham SP; Tinwala F; Neville J Eur J Sport Sci; 2019 Sep; 19(8):1024-1031. PubMed ID: 30732539 [TBL] [Abstract][Full Text] [Related]
24. Effects of vest loading on sprint kinetics and kinematics. Cross MR; Brughelli ME; Cronin JB J Strength Cond Res; 2014 Jul; 28(7):1867-74. PubMed ID: 24378661 [TBL] [Abstract][Full Text] [Related]
25. Sled Towing: The Optimal Overload for Peak Power Production. Monte A; Nardello F; Zamparo P Int J Sports Physiol Perform; 2017 Sep; 12(8):1052-1058. PubMed ID: 27967284 [TBL] [Abstract][Full Text] [Related]
26. Forearm wearable resistance effects on sprint kinematics and kinetics. Macadam P; Simperingham KD; Cronin JB J Sci Med Sport; 2019 Mar; 22(3):348-352. PubMed ID: 30219504 [TBL] [Abstract][Full Text] [Related]
27. Effects of forearm wearable resistance during accelerated sprints: From a standing start position. Uthoff AM; Macadam P; Zois J; Nagahara R; Neville J; Cronin JB J Sports Sci; 2021 Nov; 39(22):2517-2524. PubMed ID: 34165047 [TBL] [Abstract][Full Text] [Related]
28. Acute and longitudinal effects of weighted vest training on sprint-running performance: a systematic review. Macadam P; Cronin JB; Feser EH Sports Biomech; 2022 Mar; 21(3):239-254. PubMed ID: 31070108 [TBL] [Abstract][Full Text] [Related]
29. Improvement in sprint start performance by modulating an initial loading location on the starting blocks. Nagahara R; Gleadhill S; Ohshima Y J Sports Sci; 2020 Nov; 38(21):2437-2445. PubMed ID: 32608346 [TBL] [Abstract][Full Text] [Related]
30. The effect of assisted and resisted sprint training on acceleration and velocity in Division IA female soccer athletes. Upton DE J Strength Cond Res; 2011 Oct; 25(10):2645-52. PubMed ID: 21873906 [TBL] [Abstract][Full Text] [Related]
31. Effects of sprint and plyometrics training on field sport acceleration technique. Lockie RG; Murphy AJ; Callaghan SJ; Jeffriess MD J Strength Cond Res; 2014 Jul; 28(7):1790-801. PubMed ID: 24149762 [TBL] [Abstract][Full Text] [Related]
32. How sprinters accelerate beyond the velocity plateau of soccer players: Waveform analysis of ground reaction forces. Colyer SL; Nagahara R; Takai Y; Salo AIT Scand J Med Sci Sports; 2018 Dec; 28(12):2527-2535. PubMed ID: 30230037 [TBL] [Abstract][Full Text] [Related]
33. First-stance phase force contributions to acceleration sprint performance in semi-professional soccer players. Wdowski MM; Gittoes MJR Eur J Sport Sci; 2020 Apr; 20(3):366-374. PubMed ID: 31167614 [TBL] [Abstract][Full Text] [Related]
34. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. Hunter JP; Marshall RN; McNair PJ J Appl Biomech; 2005 Feb; 21(1):31-43. PubMed ID: 16131703 [TBL] [Abstract][Full Text] [Related]
35. Very-Heavy Sled Training for Improving Horizontal-Force Output in Soccer Players. Morin JB; Petrakos G; Jiménez-Reyes P; Brown SR; Samozino P; Cross MR Int J Sports Physiol Perform; 2017 Jul; 12(6):840-844. PubMed ID: 27834560 [TBL] [Abstract][Full Text] [Related]
36. The impact of lower extremity mass and inertia manipulation on sprint kinematics. Bennett JP; Sayers MG; Burkett BJ J Strength Cond Res; 2009 Dec; 23(9):2542-7. PubMed ID: 19855307 [TBL] [Abstract][Full Text] [Related]
37. Effects of sled towing on sprint starts. Cottle CA; Carlson LA; Lawrence MA J Strength Cond Res; 2014 May; 28(5):1241-5. PubMed ID: 24513621 [TBL] [Abstract][Full Text] [Related]
38. Kinetic demands of sprinting shift across the acceleration phase: Novel analysis of entire force waveforms. Colyer SL; Nagahara R; Salo AIT Scand J Med Sci Sports; 2018 Jul; 28(7):1784-1792. PubMed ID: 29630747 [TBL] [Abstract][Full Text] [Related]
39. Technical ability of force application as a determinant factor of sprint performance. Morin JB; Edouard P; Samozino P Med Sci Sports Exerc; 2011 Sep; 43(9):1680-8. PubMed ID: 21364480 [TBL] [Abstract][Full Text] [Related]
40. Alterations to the orientation of the ground reaction force vector affect sprint acceleration performance in team sports athletes. Bezodis NE; North JS; Razavet JL J Sports Sci; 2017 Sep; 35(18):1-8. PubMed ID: 27700312 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]