BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33867436)

  • 21. Determination of backscatter factors in breast tomosynthesis using MCNPX simulations and measurements.
    Baptista M; Di Maria S; Figueira C; Orvalho L; Vaz P
    Radiat Prot Dosimetry; 2015 Jul; 165(1-4):325-30. PubMed ID: 25836681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monte Carlo calculation of conversion coefficients for dose estimation in mammography based on a 3D detailed breast model.
    Wang W; Qiu R; Ren L; Liu H; Wu Z; Li C; Niu Y; Li J
    Med Phys; 2017 Jun; 44(6):2503-2514. PubMed ID: 28295395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigating energy deposition in glandular tissues for mammography using multiscale Monte Carlo simulations.
    Oliver PAK; Thomson RM
    Med Phys; 2019 Mar; 46(3):1426-1436. PubMed ID: 30657190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of photoelectric cross section data on systematic uncertainties for Monte Carlo breast dosimetry in mammography.
    Massera RT; Fernández-Varea JM; Tomal A
    Phys Med Biol; 2021 May; 66(11):. PubMed ID: 33857930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dosimetric characterization of a dedicated breast computed tomography clinical prototype.
    Sechopoulos I; Feng SS; D'Orsi CJ
    Med Phys; 2010 Aug; 37(8):4110-20. PubMed ID: 20879571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-layer heterogeneous mammographic phantoms for Monte Carlo simulation of normalized glandular dose coefficients in mammography.
    Chang TY; Lai KJ; Tu CY; Wu J
    Sci Rep; 2020 Feb; 10(1):2234. PubMed ID: 32042071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Normalized glandular dose (DgN) coefficients from experimental mammographic x-ray spectra.
    Santos JC; Tomal A; de Barros N; Costa PR
    Phys Med Biol; 2019 May; 64(10):105010. PubMed ID: 30959490
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of scatter radiation dose and absorbed doses in eye lens and thyroid gland during digital breast tomosynthesis.
    Chusin T; Matsubara K; Takemura A; Okubo R; Ogawa Y
    J Appl Clin Med Phys; 2019 Jan; 20(1):340-347. PubMed ID: 30472811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computation of the glandular radiation dose in digital tomosynthesis of the breast.
    Sechopoulos I; Suryanarayanan S; Vedantham S; D'Orsi C; Karellas A
    Med Phys; 2007 Jan; 34(1):221-32. PubMed ID: 17278508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glandular dose indices using a glandular dose to air kerma volume histogram in mammography.
    Shinohara S; Araki F; Ohno T
    Med Phys; 2020 Mar; 47(3):1340-1348. PubMed ID: 31859402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Indices for the evaluation of glandular dose heterogeneity in full-field digital mammography.
    Shinohara S; Araki F; Maeda M; Okamoto R; Nakamura M; Higashida Y
    J Radiol Prot; 2020 Nov; 40(4):. PubMed ID: 33120368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Technical note: MC-GPU breast dosimetry validations with other Monte Carlo codes and phase space file implementation.
    Massera RT; Thomson RM; Tomal A
    Med Phys; 2022 Jan; 49(1):244-253. PubMed ID: 34778988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single Center Evaluation of Comparative Breast Radiation dose of Contrast Enhanced Digital Mammography (CEDM), Digital Mammography (DM) and Digital Breast Tomosynthesis (DBT).
    Bicchierai G; Busoni S; Tortoli P; Bettarini S; Naro FD; De Benedetto D; Savi E; Bellini C; Miele V; Nori J
    Acad Radiol; 2022 Sep; 29(9):1342-1349. PubMed ID: 35065889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Breast Radiation Dose With CESM Compared With 2D FFDM and 3D Tomosynthesis Mammography.
    James JR; Pavlicek W; Hanson JA; Boltz TF; Patel BK
    AJR Am J Roentgenol; 2017 Feb; 208(2):362-372. PubMed ID: 28112559
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dedicated cone-beam breast CT: Data acquisition strategies based on projection angle-dependent normalized glandular dose coefficients.
    Tseng HW; Karellas A; Vedantham S
    Med Phys; 2023 Mar; 50(3):1406-1417. PubMed ID: 36427332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dosimetry in x-ray-based breast imaging.
    Dance DR; Sechopoulos I
    Phys Med Biol; 2016 Oct; 61(19):R271-R304. PubMed ID: 27617767
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patient-derived heterogeneous breast phantoms for advanced dosimetry in mammography and tomosynthesis.
    Caballo M; Rabin C; Fedon C; Rodríguez-Ruiz A; Diaz O; Boone JM; Dance DR; Sechopoulos I
    Med Phys; 2022 Aug; 49(8):5423-5438. PubMed ID: 35635844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimated risk of radiation-induced cancer following breast screening employing tomosynthesis and digital mammography.
    Alves MS; Ferro AGL; Moreira MCL; Santos WS; Neves LP; Perini AP; Belinato W; Souza DN
    J Radiol Prot; 2021 Jun; 41(2):. PubMed ID: 33498015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Radiation dose from digital breast tomosynthesis screening - A comparison with full field digital mammography.
    M Ali RMK; England A; Tootell AK; Hogg P
    J Med Imaging Radiat Sci; 2020 Dec; 51(4):599-603. PubMed ID: 32943362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. INDIVIDUALISED CALCULATION OF TISSUE IMPARTED ENERGY IN BREAST TOMOSYNTHESIS.
    Geeraert N; Klausz R; Muller S; Bloch I; Bosmans H
    Radiat Prot Dosimetry; 2016 Jun; 169(1-4):267-73. PubMed ID: 27127209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.