These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33867530)

  • 1. Transition Prediction in Hypersonic Boundary Layers Using Receptivity and Freestream Spectra.
    Balakumar P; Chou A
    AIAA J; 2018 Jan; 56(1):193-208. PubMed ID: 33867530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers.
    Balakumar P; King RA; Chou A; Owens LR; Kegerise MA
    AIAA J; 2018 Feb; 56(2):510-523. PubMed ID: 33867531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instability wave-streak interactions in a hypersonic boundary layer at flight conditions.
    Paredes P; Choudhari MM; Li F
    J Fluid Mech; 2019 Jan; 858():474-499. PubMed ID: 33867572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Freestream Disturbances in Conventional Hypersonic Wind Tunnels.
    Duan L; Choudhari MM; Chou A; Munoz F; Ali SRC; Radespiel R; Schilden T; Schröder W; Marineau EC; Casper KM; Chaudhry RS; Candler GV; Gray KA; Schneider SP
    J Spacecr Rockets; 2019 Mar; 56(2):357-368. PubMed ID: 33414565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates.
    Hejranfar K; Saadat MH; Taheri S
    Phys Rev E; 2017 Feb; 95(2-1):023314. PubMed ID: 28297984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling hypersonic boundary layer transition with localized cooling and metasurface treatments.
    Oz F; Kara K
    Sci Rep; 2024 Jul; 14(1):15928. PubMed ID: 38987632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of a Roughness Element on the Receptivity of a Hypersonic Boundary Layer over a Blunt Cone Due to Pulse Entropy Disturbance with a Single Frequency.
    Wang Z; Shi M; Tang X; Lv H; Xu L
    Entropy (Basel); 2018 May; 20(6):. PubMed ID: 33265494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of a Roughness Element on the Hypersonic Boundary Layer Receptivity Due to Different Types of Free-Stream Disturbance with a Single Frequency.
    Shi M; Xu L; Wang Z; Lv H
    Entropy (Basel); 2019 Mar; 21(3):. PubMed ID: 33266970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure Fluctuations induced by a Hypersonic Turbulent Boundary Layer.
    Duan L; Choudhari MM; Zhang C
    J Fluid Mech; 2016 Oct; 804():578-607. PubMed ID: 33442070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of high-Mach-number inviscid flows using a third-order Runge-Kutta and fifth-order WENO-based finite-difference lattice Boltzmann method.
    Shirsat AU; Nayak SG; Patil DV
    Phys Rev E; 2022 Aug; 106(2-2):025314. PubMed ID: 36109898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers.
    Zhang YT; Shi J; Shu CW; Zhou Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046709. PubMed ID: 14683081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-volume WENO scheme for viscous compressible multicomponent flows.
    Coralic V; Colonius T
    J Comput Phys; 2014 Oct; 274():95-121. PubMed ID: 25110358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypersonic N
    Hill JL; Hsu PS; Jiang N; Grib SW; Roy S; Borg M; Thomas L; Reeder M; Schumaker SA
    Appl Opt; 2021 May; 60(15):C38-C46. PubMed ID: 34143104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azimuthal Variation of Instabilities Generated on a Flared Cone by Laser Perturbations.
    Chou A; Schneider SP
    AIAA J; 2018 May; 56(5):1867-1877. PubMed ID: 31359878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ML for fast assimilation of wall-pressure measurements from hypersonic flow over a cone.
    Morra P; Meneveau C; Zaki TA
    Sci Rep; 2024 Jun; 14(1):12853. PubMed ID: 38834638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Numerical Simulation Database for Hypersonic Turbulent Boundary Layers.
    Zhang C; Duan L; Choudhari MM
    AIAA J; 2018 Nov; 56(11):4297-4311. PubMed ID: 33442066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and spatial evolution characteristics of disturbance wave in a hypersonic boundary layer due to single-frequency entropy disturbance.
    Wang Z; Tang X; Lv H; Shi J
    ScientificWorldJournal; 2014; 2014():517242. PubMed ID: 25143983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas Kinetic Scheme Coupled with High-Speed Modifications for Hypersonic Transition Flow Simulations.
    Li C; Zhao W; Liu H; Xue Y; Yang Y; Chen W
    Entropy (Basel); 2024 Feb; 26(2):. PubMed ID: 38392428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage.
    Sengupta TK; Bhaumik S; Bhumkar YG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026308. PubMed ID: 22463318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer.
    Kegerise MA; Rufer SJ
    Exp Fluids; 2016; 57():. PubMed ID: 33867649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.