These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
576 related articles for article (PubMed ID: 33867852)
1. Application of phototherapeutic-based nanoparticles in colorectal cancer. Yan J; Wang C; Jiang X; Wei Y; Wang Q; Cui K; Xu X; Wang F; Zhang L Int J Biol Sci; 2021; 17(5):1361-1381. PubMed ID: 33867852 [TBL] [Abstract][Full Text] [Related]
2. Nanoparticle-Mediated Delivery Systems in Photodynamic Therapy of Colorectal Cancer. Winifred Nompumelelo Simelane N; Abrahamse H Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830287 [TBL] [Abstract][Full Text] [Related]
3. Design and Synthesis of New PEGylated Polydopamine-Based Nanoconstructs Bearing ROS-Responsive Linkers and a Photosensitizer for Bimodal Photothermal and Photodynamic Therapies against Cancer. Zmerli I; Ibrahim N; Cressey P; Denis S; Makky A Mol Pharm; 2021 Sep; 18(9):3623-3637. PubMed ID: 34431682 [TBL] [Abstract][Full Text] [Related]
4. Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy. Zheng Y; Li Z; Chen H; Gao Y Eur J Pharm Sci; 2020 Mar; 144():105213. PubMed ID: 31926941 [TBL] [Abstract][Full Text] [Related]
5. A Novel Multi-Effect Photosensitizer for Tumor Destruction via Multimodal Imaging Guided Synergistic Cancer Phototherapy. Sun K; Wang B; Li M; Ge Y; An L; Zeng D; Shen Y; Wang P; Li M; Hu X; Yu XA Int J Nanomedicine; 2024; 19():6377-6397. PubMed ID: 38952677 [TBL] [Abstract][Full Text] [Related]
6. Progress of Phototherapy Applications in the Treatment of Bone Cancer. Sun J; Xing F; Braun J; Traub F; Rommens PM; Xiang Z; Ritz U Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768789 [TBL] [Abstract][Full Text] [Related]
7. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes. Guo S; Gu D; Yang Y; Tian J; Chen X J Nanobiotechnology; 2023 Sep; 21(1):348. PubMed ID: 37759287 [TBL] [Abstract][Full Text] [Related]
8. Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine. Overchuk M; Weersink RA; Wilson BC; Zheng G ACS Nano; 2023 May; 17(9):7979-8003. PubMed ID: 37129253 [TBL] [Abstract][Full Text] [Related]
9. Nanomaterials-based advanced systems for photothermal / photodynamic therapy of oral cancer. Wang Y; Chang L; Gao H; Yu C; Gao Y; Peng Q Eur J Med Chem; 2024 Jun; 272():116508. PubMed ID: 38761583 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy. Zhang Y; Wang B; Zhao R; Zhang Q; Kong X Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111099. PubMed ID: 32600703 [TBL] [Abstract][Full Text] [Related]
11. Recent Advances in Chemistry, Mechanism, and Applications of Quantum Dots in Photodynamic and Photothermal Therapy. Ranjbari F; Fathi F Anticancer Agents Med Chem; 2024; 24(10):733-744. PubMed ID: 38409708 [TBL] [Abstract][Full Text] [Related]
12. A near-infrared and lysosome-targeted BODIPY photosensitizer for photodynamic and photothermal synergistic therapy. Liu Y; Gao J; Li H; Yang M; Lv J; Zhou Y; Yuan Z; Li X Org Biomol Chem; 2023 Jun; 21(22):4672-4682. PubMed ID: 37219018 [TBL] [Abstract][Full Text] [Related]
13. All organic nanomedicine for PDT-PTT combination therapy of cancer cells in hypoxia. Urazaliyeva A; Kanabekova P; Beisenbayev A; Kulsharova G; Atabaev T; Kim S; Lim CK Sci Rep; 2024 Jul; 14(1):17507. PubMed ID: 39080400 [TBL] [Abstract][Full Text] [Related]
14. Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Kadkhoda J; Tarighatnia A; Barar J; Aghanejad A; Davaran S Photodiagnosis Photodyn Ther; 2022 Mar; 37():102697. PubMed ID: 34936918 [TBL] [Abstract][Full Text] [Related]
15. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. Yu XT; Sui SY; He YX; Yu CH; Peng Q Biomater Adv; 2022 Apr; 135():212725. PubMed ID: 35929205 [TBL] [Abstract][Full Text] [Related]
16. Low Power Single Laser Activated Synergistic Cancer Phototherapy Using Photosensitizer Functionalized Dual Plasmonic Photothermal Nanoagents. Younis MR; Wang C; An R; Wang S; Younis MA; Li ZQ; Wang Y; Ihsan A; Ye D; Xia XH ACS Nano; 2019 Feb; 13(2):2544-2557. PubMed ID: 30730695 [TBL] [Abstract][Full Text] [Related]
17. Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power. Sun S; Chen J; Jiang K; Tang Z; Wang Y; Li Z; Liu C; Wu A; Lin H ACS Appl Mater Interfaces; 2019 Feb; 11(6):5791-5803. PubMed ID: 30648846 [TBL] [Abstract][Full Text] [Related]
18. Metal-Organic Frameworks-Derived Carbon Nanoparticles for Photoacoustic Imaging-Guided Photothermal/Photodynamic Combined Therapy. Yang P; Tian Y; Men Y; Guo R; Peng H; Jiang Q; Yang W ACS Appl Mater Interfaces; 2018 Dec; 10(49):42039-42049. PubMed ID: 30427655 [TBL] [Abstract][Full Text] [Related]
19. Hollow silica nanoparticles loaded with hydrophobic phthalocyanine for near-infrared photodynamic and photothermal combination therapy. Peng J; Zhao L; Zhu X; Sun Y; Feng W; Gao Y; Wang L; Li F Biomaterials; 2013 Oct; 34(32):7905-12. PubMed ID: 23891514 [TBL] [Abstract][Full Text] [Related]
20. A porous material excited by near-infrared light for photo/chemodynamic and photothermal dual-mode combination therapy. Sun M; Yang D; Sun Q; Jia T; Kuang Y; Gai S; He F; Zhang F; Yang P J Mater Chem B; 2020 Dec; 8(46):10559-10576. PubMed ID: 32939520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]