These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 33867930)

  • 1. Self-Powered Memristive Systems for Storage and Neuromorphic Computing.
    Shi J; Wang Z; Tao Y; Xu H; Zhao X; Lin Y; Liu Y
    Front Neurosci; 2021; 15():662457. PubMed ID: 33867930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network.
    Seok H; Son S; Jathar SB; Lee J; Kim T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging memristive neurons for neuromorphic computing and sensing.
    Li Z; Tang W; Zhang B; Yang R; Miao X
    Sci Technol Adv Mater; 2023; 24(1):2188878. PubMed ID: 37090846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing.
    Bian H; Goh YY; Liu Y; Ling H; Xie L; Liu X
    Adv Mater; 2021 Nov; 33(46):e2006469. PubMed ID: 33837601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence.
    Wang J; Zhuge X; Zhuge F
    Sci Technol Adv Mater; 2021 May; 22(1):326-344. PubMed ID: 34025215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing.
    Choi S; Yang J; Wang G
    Adv Mater; 2020 Dec; 32(51):e2004659. PubMed ID: 33006204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing.
    Park SO; Jeong H; Park J; Bae J; Choi S
    Nat Commun; 2022 Jun; 13(1):2888. PubMed ID: 35660724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights.
    Emelyanov AV; Nikiruy KE; Serenko AV; Sitnikov AV; Presnyakov MY; Rybka RB; Sboev AG; Rylkov VV; Kashkarov PK; Kovalchuk MV; Demin VA
    Nanotechnology; 2020 Jan; 31(4):045201. PubMed ID: 31578002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Approach to the Fabrication of Memristive Neuromorphic Devices: Compositionally Graded Films.
    Yoon JG
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memristive and CMOS Devices for Neuromorphic Computing.
    Milo V; Malavena G; Monzio Compagnoni C; Ielmini D
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Memristive Artificial Synapses for Neuromorphic Computing.
    Huang W; Xia X; Zhu C; Steichen P; Quan W; Mao W; Yang J; Chu L; Li X
    Nanomicro Lett; 2021 Mar; 13(1):85. PubMed ID: 34138298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances and Future Prospects for Memristive Materials, Devices, and Systems.
    Song MK; Kang JH; Zhang X; Ji W; Ascoli A; Messaris I; Demirkol AS; Dong B; Aggarwal S; Wan W; Hong SM; Cardwell SG; Boybat I; Seo JS; Lee JS; Lanza M; Yeon H; Onen M; Li J; Yildiz B; Del Alamo JA; Kim S; Choi S; Milano G; Ricciardi C; Alff L; Chai Y; Wang Z; Bhaskaran H; Hersam MC; Strukov D; Wong HP; Valov I; Gao B; Wu H; Tetzlaff R; Sebastian A; Lu W; Chua L; Yang JJ; Kim J
    ACS Nano; 2023 Jul; 17(13):11994-12039. PubMed ID: 37382380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Compact Artificial Memristive Neuron with Low Energy Consumption.
    Zhang Y; He W; Wu Y; Huang K; Shen Y; Su J; Wang Y; Zhang Z; Ji X; Li G; Zhang H; Song S; Li H; Sun L; Zhao R; Shi L
    Small; 2018 Dec; 14(51):e1802188. PubMed ID: 30427578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parylene-based memristive crossbar structures with multilevel resistive switching for neuromorphic computing.
    Shvetsov BS; Minnekhanov AA; Emelyanov AV; Ilyasov AI; Grishchenko YV; Zanaveskin ML; Nesmelov AA; Streltsov DR; Patsaev TD; Vasiliev AL; Rylkov VV; Demin VA
    Nanotechnology; 2022 Mar; 33(25):. PubMed ID: 35276689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Memristive Materials to Neural Networks.
    Guo T; Sun B; Ranjan S; Jiao Y; Wei L; Zhou YN; Wu YA
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54243-54265. PubMed ID: 33232112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer Analog Memristive Synapse with Atomic-Scale Conductive Filament for Flexible Neuromorphic Computing System.
    Jang BC; Kim S; Yang SY; Park J; Cha JH; Oh J; Choi J; Im SG; Dravid VP; Choi SY
    Nano Lett; 2019 Feb; 19(2):839-849. PubMed ID: 30608706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic memristive devices for computing and neuromorphic applications.
    Gaba S; Sheridan P; Zhou J; Choi S; Lu W
    Nanoscale; 2013 Jul; 5(13):5872-8. PubMed ID: 23698627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration and Co-design of Memristive Devices and Algorithms for Artificial Intelligence.
    Wang W; Song W; Yao P; Li Y; Van Nostrand J; Qiu Q; Ielmini D; Yang JJ
    iScience; 2020 Dec; 23(12):101809. PubMed ID: 33305176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial HfO
    Yang Y; Zhu X; Ma Z; Hu H; Chen T; Li W; Xu J; Xu L; Chen K
    Nanomaterials (Basel); 2023 Feb; 13(3):. PubMed ID: 36770567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.