BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33868345)

  • 41. Assessment of Canopy Conductance Responses to Vapor Pressure Deficit in Eight Hazelnut Orchards Across Continents.
    Pasqualotto G; Carraro V; Suarez Huerta E; Anfodillo T
    Front Plant Sci; 2021; 12():767916. PubMed ID: 34956266
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nitrogen-limited growth of lettuce is associated with lower stomatal conductance.
    Broadley MR; Escobar-Gutiérrez AJ; Burns A; Burns IG
    New Phytol; 2001 Oct; 152(1):97-106. PubMed ID: 35974489
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Absence of OsβCA1 causes a CO
    Chen T; Wu H; Wu J; Fan X; Li X; Lin Y
    Plant J; 2017 Apr; 90(2):344-357. PubMed ID: 28142196
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Physiological effects of kaolin applications in well-irrigated and water-stressed walnut and almond trees.
    Rosati A; Metcalf SG; Buchner RP; Fulton AE; Lampinen BD
    Ann Bot; 2006 Jul; 98(1):267-75. PubMed ID: 16735404
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stomatal Sensitivity to Vapor Pressure Deficit and the Loss of Hydraulic Conductivity Are Coordinated in
    Fan DY; Dang QL; Xu CY; Jiang CD; Zhang WF; Xu XW; Yang XF; Zhang SR
    Front Plant Sci; 2020; 11():1248. PubMed ID: 32922423
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low vapour pressure deficit affects nitrogen nutrition and foliar metabolites in silver birch.
    Lihavainen J; Ahonen V; Keski-Saari S; Kontunen-Soppela S; Oksanen E; Keinänen M
    J Exp Bot; 2016 Jul; 67(14):4353-65. PubMed ID: 27259554
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season.
    Zhang D; Zhang Z; Li J; Chang Y; Du Q; Pan T
    PLoS One; 2015; 10(7):e0133919. PubMed ID: 26221726
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effects of oxides of nitrogen and carbon dioxide enrichment on photosynthesis and growth of lettuce (Lactuca sativa L.).
    Caporn SJM
    New Phytol; 1989 Mar; 111(3):473-481. PubMed ID: 33874017
    [TBL] [Abstract][Full Text] [Related]  

  • 50. How does the VPD response of isohydric and anisohydric plants depend on leaf surface particles?
    Burkhardt J; Pariyar S
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():91-100. PubMed ID: 26417842
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought.
    Diaz-Espejo A; Nicolás E; Fernández JE
    Plant Cell Environ; 2007 Aug; 30(8):922-33. PubMed ID: 17617820
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis.
    Tanaka Y; Sugano SS; Shimada T; Hara-Nishimura I
    New Phytol; 2013 May; 198(3):757-764. PubMed ID: 23432385
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species.
    El-Sharkawy MA; Cock JH; Del Pilar Hernandez A
    Photosynth Res; 1985 Jan; 7(2):137-49. PubMed ID: 24443083
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties.
    Meinzer FC; Goldstein G; Jackson P; Holbrook NM; Gutiérrez MV; Cavelier J
    Oecologia; 1995 Apr; 101(4):514-522. PubMed ID: 28306968
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Midday depression of leaf CO2 exchange within the crown of Dipterocarpus sublamellatus in a lowland dipterocarp forest in Peninsular Malaysia.
    Kosugi Y; Takanashi S; Matsuo N; Nik AR
    Tree Physiol; 2009 Apr; 29(4):505-15. PubMed ID: 19203974
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The stomatal response to vapor pressure deficit drives the apparent temperature response of photosynthesis in tropical forests.
    Slot M; Rifai SW; Eze CE; Winter K
    New Phytol; 2024 May; ():. PubMed ID: 38736030
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The influence of plant water stress on stomatal control of gas exchange at different levels of atmospheric humidity.
    Osonubi O; Davies WJ
    Oecologia; 1980 Jul; 46(1):1-6. PubMed ID: 28310617
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changes in gas exchange characteristics and water use efficiency of mangroves in response to salinity and vapour pressure deficit.
    Clough BF; Sim RG
    Oecologia; 1989 Apr; 79(1):38-44. PubMed ID: 28312810
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stomatal and non-stomatal limitations are responsible in down-regulation of photosynthesis in melon plants grown under the saline condition: Application of carbon isotope discrimination as a reliable proxy.
    Sarabi B; Fresneau C; Ghaderi N; Bolandnazar S; Streb P; Badeck FW; Citerne S; Tangama M; David A; Ghashghaie J
    Plant Physiol Biochem; 2019 Aug; 141():1-19. PubMed ID: 31125807
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm.
    Koch GW; Sillett SC; Antoine ME; Williams CB
    Oecologia; 2015 Feb; 177(2):321-31. PubMed ID: 25542214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.