These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33868345)

  • 61. Ambient aerosol increases minimum leaf conductance and alters the aperture-flux relationship as stomata respond to vapor pressure deficit (VPD).
    Grantz DA; Zinsmeister D; Burkhardt J
    New Phytol; 2018 Jul; 219(1):275-286. PubMed ID: 29600514
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Role of guard-cell ABA in determining steady-state stomatal aperture and prompt vapor-pressure-deficit response.
    Yaaran A; Negin B; Moshelion M
    Plant Sci; 2019 Apr; 281():31-40. PubMed ID: 30824059
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Only Extreme Fluctuations in Light Levels Reduce Lettuce Growth Under Sole Source Lighting.
    Bhuiyan R; van Iersel MW
    Front Plant Sci; 2021; 12():619973. PubMed ID: 33584773
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Stem photosynthesis in a desert ephemeral, Eriogonum inflatum : Characterization of leaf and stem CO
    Osmond CB; Smith SD; Gui-Ying B; Sharkey TD
    Oecologia; 1987 Jul; 72(4):542-549. PubMed ID: 28312516
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton.
    Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA
    J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea.
    Perez-Martin A; Flexas J; Ribas-Carbó M; Bota J; Tomás M; Infante JM; Diaz-Espejo A
    J Exp Bot; 2009; 60(8):2391-405. PubMed ID: 19457982
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Genetic variation in stomatal and biochemical limitations to photosynthesis in the annual plant, Polygonum arenastrum.
    Geber MA; Dawson TE
    Oecologia; 1997 Feb; 109(4):535-546. PubMed ID: 28307337
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Quantitative limitations to photosynthesis in K deficient sunflower and their implications on water-use efficiency.
    Jákli B; Tavakol E; Tränkner M; Senbayram M; Dittert K
    J Plant Physiol; 2017 Feb; 209():20-30. PubMed ID: 28012363
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization.
    Fila G; Badeck FW; Meyer S; Cerovic Z; Ghashghaie J
    J Exp Bot; 2006; 57(11):2687-95. PubMed ID: 16837534
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Stomatal sensitivity to carbon dioxide and humidity: a comparison of two c(3) and two c(4) grass species.
    Morison JI; Gifford RM
    Plant Physiol; 1983 Apr; 71(4):789-96. PubMed ID: 16662909
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The effect of blue light on stomatal oscillations and leaf turgor pressure in banana leaves.
    Zait Y; Shapira O; Schwartz A
    Plant Cell Environ; 2017 Jul; 40(7):1143-1152. PubMed ID: 28098339
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Gas-exchange analysis of chloroplastic fructose-1,6-bisphosphatase antisense potatoes at different air humidities and at elevated CO(2).
    Muschak M; Willmitzer L; Fisahn J
    Planta; 1999 Jul; 209(1):104-11. PubMed ID: 10467036
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Leaf- and stand-level responses of a forested mesocosm to independent manipulations of temperature and vapor pressure deficit.
    Barron-Gafford GA; Grieve KA; Murthy R
    New Phytol; 2007; 174(3):614-625. PubMed ID: 17447916
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and CO2 for diverse species grown under contrasting irradiances.
    Creese C; Oberbauer S; Rundel P; Sack L
    New Phytol; 2014 Oct; 204(1):92-104. PubMed ID: 25077933
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Water relations and gas exchange of Acer saccharum seedlings in contrasting natural light and water regimes.
    Ellsworth DS; Reich PB
    Tree Physiol; 1992 Jan; 10(1):1-20. PubMed ID: 14969871
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : III. Daily courses of net photosynthesis and transpiration at the end of the dry period].
    Schulze ED; Lange OL; Koch W
    Oecologia; 1972 Dec; 9(4):317-340. PubMed ID: 28313070
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Low temperature-enhanced inhibition of photosynthesis by oxides of nitrogen in lettuce (Lactuca sativa L.).
    Caporn SJM; Mansfield TA; Hand DW
    New Phytol; 1991 Jun; 118(2):309-313. PubMed ID: 33874183
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Variation in hydraulic architecture and gas-exchange in two desert sub-shrubs, Hymenoclea salsola (T. & G.) and Ambrosia dumosa (Payne).
    Comstock JP
    Oecologia; 2000 Oct; 125(1):1-10. PubMed ID: 28308210
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Vapour Pressure Deficit (VPD) Drives the Balance of Hydraulic-Related Anatomical Traits in Lettuce Leaves.
    Amitrano C; Rouphael Y; De Pascale S; De Micco V
    Plants (Basel); 2022 Sep; 11(18):. PubMed ID: 36145772
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Separating the effects of hypobaria and hypoxia on lettuce: growth and gas exchange.
    He C; Davies FT; Lacey RE
    Physiol Plant; 2007 Oct; 131(2):226-40. PubMed ID: 18251894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.