These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33868491)

  • 1. Three-phase Model of Visco-elastic Incompressible Fluid Flow and its Computational Implementation.
    Xu S; Alber M; Xu Z
    Commun Comput Phys; 2019; 25(2):586-624. PubMed ID: 33868491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dual resolution phase-field solver for wetting of viscoelastic droplets.
    Bazesefidpar K; Brandt L; Tammisola O
    Int J Numer Methods Fluids; 2022 Sep; 94(9):1517-1541. PubMed ID: 36247354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.
    Vorobev A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056312. PubMed ID: 21230581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-field-based lattice Boltzmann model for immiscible incompressible N-phase flows.
    Yuan X; Liang H; Chai Z; Shi B
    Phys Rev E; 2020 Jun; 101(6-1):063310. PubMed ID: 32688516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
    Kolahdouz EM; Wells DR; Rossi S; Aycock KI; Craven BA; Griffith BE
    J Comput Phys; 2023 Sep; 488():. PubMed ID: 37214277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regularity criterion for solutions of the three-dimensional Cahn-Hilliard-Navier-Stokes equations and associated computations.
    Gibbon JD; Pal N; Gupta A; Pandit R
    Phys Rev E; 2016 Dec; 94(6-1):063103. PubMed ID: 28085309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio.
    Liang H; Liu H; Chai Z; Shi B
    Phys Rev E; 2019 Jun; 99(6-1):063306. PubMed ID: 31330728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Color-gradient-based phase-field equation for multiphase flow.
    Haghani R; Erfani H; McClure JE; Flekkøy EG; Berg CF
    Phys Rev E; 2024 Mar; 109(3-2):035301. PubMed ID: 38632731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.
    Aland S; Lowengrub J; Voigt A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046321. PubMed ID: 23214691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space.
    Kavvas ML; Ercan A
    Sci Rep; 2022 Nov; 12(1):19337. PubMed ID: 36369242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consistent and conservative phase-field-based lattice Boltzmann method for incompressible two-phase flows.
    Zhan C; Chai Z; Shi B
    Phys Rev E; 2022 Aug; 106(2-2):025319. PubMed ID: 36109994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.
    Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H
    J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling ternary fluids in contact with elastic membranes.
    Pepona M; Shek ACM; Semprebon C; Krüger T; Kusumaatmaja H
    Phys Rev E; 2021 Feb; 103(2-1):022112. PubMed ID: 33735964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eulerian simulation of complex suspensions and biolocomotion in three dimensions.
    Lin YL; Derr NJ; Rycroft CH
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34969855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visco-elastic behavior of articular cartilage under applied magnetic field and strain-dependent permeability.
    Ali U; Siddique JI
    Comput Methods Biomech Biomed Engin; 2020 Jul; 23(9):524-535. PubMed ID: 32379552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
    Li Z; Lai MC
    East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity.
    Kim CS; Kiris C; Kwak D; David T
    J Biomech Eng; 2006 Apr; 128(2):194-202. PubMed ID: 16524330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A ternary mixture model with dynamic boundary conditions.
    Liu S; Wu Y; Zhao X
    Math Biosci Eng; 2024 Jan; 21(2):2050-2083. PubMed ID: 38454674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.