These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33868549)

  • 1. Wildfire-Induced CO Plume Observations From NAST-I During the FIREX-AQ Field Campaign.
    Zhou DK; Larar AM; Liu X; Noe AM; Diskin GS; Soja AJ; Arnold GT; McGill MJ
    IEEE J Sel Top Appl Earth Obs Remote Sens; 2021; 14():2901-2910. PubMed ID: 33868549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tropospheric CO observed with the NAST-I retrieval methodology, analyses, and first results.
    Zhou DK; Smith WL; Liu X; Li J; Larar AM; Mango SA
    Appl Opt; 2005 May; 44(15):3032-44. PubMed ID: 15929295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic aircraft and ground observations of transported wildfire smoke and its impact on air quality in New York City during the summer 2018 LISTOS campaign.
    Wu Y; Nehrir AR; Ren X; Dickerson RR; Huang J; Stratton PR; Gronoff G; Kooi SA; Collins JE; Berkoff TA; Lei L; Gross B; Moshary F
    Sci Total Environ; 2021 Jun; 773():145030. PubMed ID: 33940711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Characterization of Wildfire Smoke and Surface Properties With Imaging Spectroscopy During the FIREX-AQ Field Campaign.
    Brodrick PG; Thompson DR; Garay MJ; Giles DM; Holben BN; Kalashnikova OV
    J Geophys Res Atmos; 2022 Apr; 127(7):e2021JD034905. PubMed ID: 35865790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical model evaluation of 2013 California wild fire air quality impacts using surface, aircraft, and satellite data.
    Baker KR; Woody MC; Valin L; Szykman J; Yates EL; Iraci LT; Choi HD; Soja AJ; Koplitz SN; Zhou L; Campuzano-Jost P; Jimenez JL; Hair JW
    Sci Total Environ; 2018 Oct; 637-638():1137-1149. PubMed ID: 29801207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires.
    Stockwell CE; Bela MM; Coggon MM; Gkatzelis GI; Wiggins E; Gargulinski EM; Shingler T; Fenn M; Griffin D; Holmes CD; Ye X; Saide PE; Bourgeois I; Peischl J; Womack CC; Washenfelder RA; Veres PR; Neuman JA; Gilman JB; Lamplugh A; Schwantes RH; McKeen SA; Wisthaler A; Piel F; Guo H; Campuzano-Jost P; Jimenez JL; Fried A; Hanisco TF; Huey LG; Perring A; Katich JM; Diskin GS; Nowak JB; Bui TP; Halliday HS; DiGangi JP; Pereira G; James EP; Ahmadov R; McLinden CA; Soja AJ; Moore RH; Hair JW; Warneke C
    Environ Sci Technol; 2022 Jun; 56(12):7564-7577. PubMed ID: 35579536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic product retrieval methodology and validation for NAST-I.
    Zhou DK; Smith WL; Li J; Howell HB; Cantwell GW; Larar AM; Knuteson RO; Tobin DC; Revercomb HE; Mango SA
    Appl Opt; 2002 Nov; 41(33):6957-67. PubMed ID: 12463240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Lightweight Remote Sensing Payload for Wildfire Detection and Fire Radiative Power Measurements.
    Thornberry TD; Gao RS; Ciciora SJ; Watts LA; McLaughlin RJ; Leonardi A; Rosenlof KH; Argrow BM; Elston JS; Stachura M; Fromm J; Brewer WA; Schroeder P; Zucker M
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing Vertical Allocation of Wildfire Smoke Emissions Using Observational Constraints From Airborne Lidar in the Western U.S.
    Ye X; Saide PE; Hair J; Fenn M; Shingler T; Soja A; Gargulinski E; Wiggins E
    J Geophys Res Atmos; 2022 Nov; 127(21):e2022JD036808. PubMed ID: 37035763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of NO
    Choi S; Lamsal LN; Follette-Cook M; Joiner J; Krotkov NA; Swartz WH; Pickering KE; Loughner CP; Appel W; Pfister G; Saide PE; Cohen RC; Weinheimer AJ; Herman JR
    Atmos Meas Tech; 2020 May; 13(5):. PubMed ID: 32670429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season.
    Pavlovic R; Chen J; Anderson K; Moran MD; Beaulieu PA; Davignon D; Cousineau S
    J Air Waste Manag Assoc; 2016 Sep; 66(9):819-41. PubMed ID: 26934496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Health Risk Implications of Volatile Organic Compounds in Wildfire Smoke During the 2019 FIREX-AQ Campaign and Beyond.
    Dickinson GN; Miller DD; Bajracharya A; Bruchard W; Durbin TA; McGarry JKP; Moser EP; Nuñez LA; Pukkila EJ; Scott PS; Sutton PJ; Johnston NAC
    Geohealth; 2022 Aug; 6(8):e2021GH000546. PubMed ID: 36017488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS).
    Huff AK; Kondragunta S; Zhang H; Hoff RM
    Environ Health Insights; 2015; 9(Suppl 2):9-18. PubMed ID: 26078588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring aerosols near clouds with high-spatial-resolution aircraft remote sensing during SEAC
    Spencer RS; Levy RC; Remer LA; Mattoo S; Arnold GT; Hlavka DL; Meyer KG; Marshak A; Wilcox EM; Platnick SE
    J Geophys Res Atmos; 2019 Feb; 124(4):2148-2173. PubMed ID: 32676260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconciling Assumptions in Bottom-Up and Top-Down Approaches for Estimating Aerosol Emission Rates From Wildland Fires Using Observations From FIREX-AQ.
    Wiggins EB; Anderson BE; Brown MD; Campuzano-Jost P; Chen G; Crawford J; Crosbie EC; Dibb J; DiGangi JP; Diskin GS; Fenn M; Gallo F; Gargulinski EM; Guo H; Hair JW; Halliday HS; Ichoku C; Jimenez JL; Jordan CE; Katich JM; Nowak JB; Perring AE; Robinson CE; Sanchez KJ; Schueneman M; Schwarz JP; Shingler TJ; Shook MA; Soja AJ; Stockwell CE; Thornhill KL; Travis KR; Warneke C; Winstead EL; Ziemba LD; Moore RH
    J Geophys Res Atmos; 2021 Dec; 126(24):e2021JD035692. PubMed ID: 35865864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke.
    Decker ZCJ; Wang S; Bourgeois I; Campuzano Jost P; Coggon MM; DiGangi JP; Diskin GS; Flocke FM; Franchin A; Fredrickson CD; Gkatzelis GI; Hall SR; Halliday H; Hayden K; Holmes CD; Huey LG; Jimenez JL; Lee YR; Lindaas J; Middlebrook AM; Montzka DD; Neuman JA; Nowak JB; Pagonis D; Palm BB; Peischl J; Piel F; Rickly PS; Robinson MA; Rollins AW; Ryerson TB; Sekimoto K; Thornton JA; Tyndall GS; Ullmann K; Veres PR; Warneke C; Washenfelder RA; Weinheimer AJ; Wisthaler A; Womack C; Brown SS
    Environ Sci Technol; 2021 Dec; 55(23):15646-15657. PubMed ID: 34817984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9-12, 2015.
    Dreessen J; Sullivan J; Delgado R
    J Air Waste Manag Assoc; 2016 Sep; 66(9):842-62. PubMed ID: 26963934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HONO Emissions from Western U.S. Wildfires Provide Dominant Radical Source in Fresh Wildfire Smoke.
    Peng Q; Palm BB; Melander KE; Lee BH; Hall SR; Ullmann K; Campos T; Weinheimer AJ; Apel EC; Hornbrook RS; Hills AJ; Montzka DD; Flocke F; Hu L; Permar W; Wielgasz C; Lindaas J; Pollack IB; Fischer EV; Bertram TH; Thornton JA
    Environ Sci Technol; 2020 May; 54(10):5954-5963. PubMed ID: 32294377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign.
    Collier S; Zhou S; Onasch TB; Jaffe DA; Kleinman L; Sedlacek AJ; Briggs NL; Hee J; Fortner E; Shilling JE; Worsnop D; Yokelson RJ; Parworth C; Ge X; Xu J; Butterfield Z; Chand D; Dubey MK; Pekour MS; Springston S; Zhang Q
    Environ Sci Technol; 2016 Aug; 50(16):8613-22. PubMed ID: 27398804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.