These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 33868802)
21. A Radish Basic Helix-Loop-Helix Transcription Factor, RsTT8 Acts a Positive Regulator for Anthocyanin Biosynthesis. Lim SH; Kim DH; Kim JK; Lee JY; Ha SH Front Plant Sci; 2017; 8():1917. PubMed ID: 29167678 [TBL] [Abstract][Full Text] [Related]
22. Genome- and Transcriptome-Wide Characterization of Fan L; Xu L; Wang Y; Tang M; Liu L Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31888167 [TBL] [Abstract][Full Text] [Related]
23. Genome-wide identification and expression pattern analysis of the MATE gene family in carmine radish (Raphanus sativus L.). Zheng Z; Gao J; Wang C; Peng H; Zeng J; Chen F Gene; 2023 Dec; 887():147734. PubMed ID: 37625557 [TBL] [Abstract][Full Text] [Related]
24. Transcriptome analyses reveal key genes involved in skin color changes of 'Xinlimei' radish taproot. Liu T; Zhang Y; Zhang X; Sun Y; Wang H; Song J; Li X Plant Physiol Biochem; 2019 Jun; 139():528-539. PubMed ID: 31029026 [TBL] [Abstract][Full Text] [Related]
25. Molecular Regulatory Network of Anthocyanin Accumulation in Black Radish Skin as Revealed by Transcriptome and Metabonome Analysis. Zhang J; Zhang ZX; Wen BY; Jiang YJ; He X; Bai R; Zhang XL; Chai WC; Xu XY; Xu J; Hou LP; Li ML Int J Mol Sci; 2023 Sep; 24(17):. PubMed ID: 37686469 [TBL] [Abstract][Full Text] [Related]
26. MYB1 transcription factor is a candidate responsible for red root skin in radish (Raphanus sativus L.). Yi G; Kim JS; Park JE; Shin H; Yu SH; Park S; Huh JH PLoS One; 2018; 13(9):e0204241. PubMed ID: 30240413 [TBL] [Abstract][Full Text] [Related]
27. The whole genome assembly and evolution analyze of carmine radish ( Peng H; Gao J Mitochondrial DNA B Resour; 2020; 5(3):2252-2253. PubMed ID: 33366995 [TBL] [Abstract][Full Text] [Related]
28. Niu M; Bao C; Chen J; Zhou W; Zhang Y; Zhang X; Su N; Cui J Front Plant Sci; 2022; 13():870202. PubMed ID: 35860534 [TBL] [Abstract][Full Text] [Related]
29. De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering. Nie S; Li C; Xu L; Wang Y; Huang D; Muleke EM; Sun X; Xie Y; Liu L BMC Genomics; 2016 May; 17():389. PubMed ID: 27216755 [TBL] [Abstract][Full Text] [Related]
30. Sequence and epigenetic variations of R2R3-MYB transcription factors determine the diversity of taproot skin and flesh colors in different cultivated types of radish (Raphanus sativus L.). Wang Q; Wang Y; Wu X; Shi W; Chen N; Pang Y; Zhang L Theor Appl Genet; 2024 May; 137(6):133. PubMed ID: 38753199 [TBL] [Abstract][Full Text] [Related]
31. Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish ( Kang JN; Won SY; Seo MS; Lee J; Lee SM; Kwon SJ; Kim JS Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32785002 [TBL] [Abstract][Full Text] [Related]
32. Molecular mechanism controlling anthocyanin composition and content in radish plants with different root colors. Lim SH; Kim DH; Lee JY Plant Physiol Biochem; 2023 Nov; 204():108091. PubMed ID: 37864927 [TBL] [Abstract][Full Text] [Related]
33. A Comparative Metabolomics Study of Flavonoids in Radish with Different Skin and Flesh Colors ( Zhang J; Qiu X; Tan Q; Xiao Q; Mei S J Agric Food Chem; 2020 Dec; 68(49):14463-14470. PubMed ID: 33216541 [TBL] [Abstract][Full Text] [Related]
34. Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.). Sun X; Xu L; Wang Y; Luo X; Zhu X; Kinuthia KB; Nie S; Feng H; Li C; Liu L Plant Cell Rep; 2016 Feb; 35(2):329-46. PubMed ID: 26518430 [TBL] [Abstract][Full Text] [Related]
35. A novel SNP within the Rsa10025320 gene is highly associated with hollowness in red-skinned radish fleshy roots. Wei D; Zhang C; Ran M; Wu J; Li X; Wu H; Wang Z; Tang Q; Yang F Theor Appl Genet; 2024 Sep; 137(10):242. PubMed ID: 39347983 [TBL] [Abstract][Full Text] [Related]
36. Selenium treatment promotes anthocyanin accumulation in radish sprouts (Raphanus sativus L.) by its regulation of photosynthesis and sucrose transport. Chen J; Chen H; Wang H; Zhan J; Yuan X; Cui J; Su N Food Res Int; 2023 Mar; 165():112551. PubMed ID: 36869458 [TBL] [Abstract][Full Text] [Related]
37. Expression profiling of genes involved in ascorbate biosynthesis and recycling during fleshy root development in radish. Xu Y; Zhu X; Chen Y; Gong Y; Liu L Plant Physiol Biochem; 2013 Sep; 70():269-77. PubMed ID: 23800662 [TBL] [Abstract][Full Text] [Related]
38. Genome-wide sRNA and mRNA transcriptomic profiling insights into dynamic regulation of taproot thickening in radish (Raphanus sativus L.). Xie Y; Ying J; Xu L; Wang Y; Dong J; Chen Y; Tang M; Li C; M'mbone Muleke E; Liu L BMC Plant Biol; 2020 Aug; 20(1):373. PubMed ID: 32770962 [TBL] [Abstract][Full Text] [Related]
39. Fine mapping and analysis of candidate genes for qBT2 and qBT7.2 locus controlling bolting time in radish (Raphanus sativus L.). Jin Y; Luo X; Li Y; Peng X; Wu L; Yang G; Xu X; Pei Y; Li W; Zhang W Theor Appl Genet; 2023 Dec; 137(1):4. PubMed ID: 38085292 [TBL] [Abstract][Full Text] [Related]
40. De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish (Raphanus sativus L.). Xu L; Wang Y; Liu W; Wang J; Zhu X; Zhang K; Yu R; Wang R; Xie Y; Zhang W; Gong Y; Liu L Plant Sci; 2015 Jul; 236():313-23. PubMed ID: 26025544 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]