BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33868956)

  • 1. Mechanism of nanotoxicity in
    Saxena P; Saharan V; Baroliya PK; Gour VS; Rai MK; Harish
    Toxicol Rep; 2021; 8():724-731. PubMed ID: 33868956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity assessment of ZnO nanoparticles to freshwater microalgae Coelastrella terrestris.
    Saxena P; Harish
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):26991-27001. PubMed ID: 31313230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis.
    Suman TY; Radhika Rajasree SR; Kirubagaran R
    Ecotoxicol Environ Saf; 2015 Mar; 113():23-30. PubMed ID: 25483368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity evaluation of iron oxide nanoparticles to freshwater cyanobacteria Nostoc ellipsosporum.
    Kumar M; Seth K; Choudhary S; Kumawat G; Nigam S; Joshi G; Saharan V; Meena M; Gupta AK; Harish
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):55742-55755. PubMed ID: 36905545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure of synthesized Co
    Sharan A; Nara S
    Aquat Toxicol; 2020 Jul; 224():105498. PubMed ID: 32402915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxic effects of zinc oxide nanoparticles on cyanobacterium
    Djearamane S; Lim YM; Wong LS; Lee PF
    PeerJ; 2018; 6():e4682. PubMed ID: 29876145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inulin as a novel biocompatible coating: evaluation of surface affinities toward CaHPO4, α-Fe2O3, ZnO, CaHPO4@ZnO and α-Fe2O3@ZnO nanoparticles.
    Santillán-Urquiza E; Arteaga-Cardona F; Hernandez-Herman E; Pacheco-García PF; González-Rodríguez R; Coffer JL; Mendoza-Alvarez ME; Vélez-Ruiz JF; Méndez-Rojas MA
    J Colloid Interface Sci; 2015 Dec; 460():339-48. PubMed ID: 26364076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of boron nitride nanoparticles influencing bio-physicochemical responses in freshwater green algae.
    Saxena P; Gupta AK; Saharan V; Harish
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):23646-23654. PubMed ID: 36327076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach.
    Zhou H; Wang X; Zhou Y; Yao H; Ahmad F
    Anal Bioanal Chem; 2014 Jun; 406(15):3689-95. PubMed ID: 24752692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc oxide and ferric oxide nanoparticles combination increase plant growth, yield, and quality of soybean under semiarid region.
    Yadav A; Babu S; Krishnan P; Kaur B; Bana RS; Chakraborty D; Kumar V; Joshi B; Lal SK
    Chemosphere; 2024 Mar; 352():141432. PubMed ID: 38368965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the toxicity of pure and samarium-doped zinc oxide nanoparticles to the green microalga Chlorella vulgaris.
    Feizi S; Kosari-Nasab M; Divband B; Mahjouri S; Movafeghi A
    Environ Sci Pollut Res Int; 2022 May; 29(21):32002-32015. PubMed ID: 35015233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity of cadmium selenide nanoparticles on the green microalgaChlorella vulgaris: inducing antioxidative defense response.
    Movafeghi A; Khataee A; Rezaee A; Kosari-Nasab M; Tarrahi R
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36380-36387. PubMed ID: 31713820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioavailability and effect of α-Fe
    Bibi M; Zhu X; Munir M; Angelidaki I
    Chemosphere; 2021 Nov; 282():131044. PubMed ID: 34470146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity.
    Raja A; Ashokkumar S; Pavithra Marthandam R; Jayachandiran J; Khatiwada CP; Kaviyarasu K; Ganapathi Raman R; Swaminathan M
    J Photochem Photobiol B; 2018 Apr; 181():53-58. PubMed ID: 29501725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Invitro acaricidal activity of ethnoveterinary plants and green synthesis of zinc oxide nanoparticles against Rhipicephalus (Boophilus) microplus.
    Banumathi B; Malaikozhundan B; Vaseeharan B
    Vet Parasitol; 2016 Jan; 216():93-100. PubMed ID: 26801601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity.
    Ishwarya R; Vaseeharan B; Kalyani S; Banumathi B; Govindarajan M; Alharbi NS; Kadaikunnan S; Al-Anbr MN; Khaled JM; Benelli G
    J Photochem Photobiol B; 2018 Jan; 178():249-258. PubMed ID: 29169140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-algal activity of Fe
    Baniamerian H; Tsapekos P; Alvarado-Morales M; Shokrollahzadeh S; Safavi M; Angelidaki I
    Chemosphere; 2020 Mar; 242():125119. PubMed ID: 31677511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of oxidative stress induced by clarithromycin in two freshwater microalgae Raphidocelis subcapitata and Chlorella vulgaris.
    Guo J; Peng J; Lei Y; Kanerva M; Li Q; Song J; Guo J; Sun H
    Aquat Toxicol; 2020 Feb; 219():105376. PubMed ID: 31838304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity evaluation of iron oxide nanoparticles and accumulation by microalgae Coelastrella terrestris.
    Saxena P; Sangela V; Harish
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):19650-19660. PubMed ID: 32221830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Alpha and Gamma-Iron Oxide Nanoparticles on Marine Microalgae Species.
    Demir V; Ates M; Arslan Z; Camas M; Celik F; Bogatu C; Can ŞS
    Bull Environ Contam Toxicol; 2015 Dec; 95(6):752-7. PubMed ID: 26276558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.