BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33869152)

  • 1. Production of Biopolyamide Precursors 5-Amino Valeric Acid and Putrescine From Rice Straw Hydrolysate by Engineered
    Sasikumar K; Hannibal S; Wendisch VF; Nampoothiri KM
    Front Bioeng Biotechnol; 2021; 9():635509. PubMed ID: 33869152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of
    Mao Y; Li G; Chang Z; Tao R; Cui Z; Wang Z; Tang YJ; Chen T; Zhao X
    Biotechnol Biofuels; 2018; 11():95. PubMed ID: 29636817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
    Meiswinkel TM; Gopinath V; Lindner SN; Nampoothiri KM; Wendisch VF
    Microb Biotechnol; 2013 Mar; 6(2):131-40. PubMed ID: 23164409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Corynebacterium glutamicum for fatty alcohol production from glucose and wheat straw hydrolysate.
    Werner F; Schwardmann LS; Siebert D; Rückert-Reed C; Kalinowski J; Wirth MT; Hofer K; Takors R; Wendisch VF; Blombach B
    Biotechnol Biofuels Bioprod; 2023 Jul; 16(1):116. PubMed ID: 37464396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
    Gopinath V; Meiswinkel TM; Wendisch VF; Nampoothiri KM
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):985-96. PubMed ID: 21796382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isopropanol production using engineered Corynebacterium glutamicum from waste rice straw biomass.
    Shi X; Chang J; Kim M; Lee ME; Shin HY; Ok Han S
    Bioresour Technol; 2024 Mar; 396():130416. PubMed ID: 38316230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of a Wheat Sidestream for 5-Aminovalerate Production in
    Burgardt A; Prell C; Wendisch VF
    Front Bioeng Biotechnol; 2021; 9():732271. PubMed ID: 34660554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system.
    Schneider J; Eberhardt D; Wendisch VF
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):169-78. PubMed ID: 22370950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologous expression of genes for bioconversion of xylose to xylonic acid in Corynebacterium glutamicum and optimization of the bioprocess.
    Sundar MSL; Susmitha A; Rajan D; Hannibal S; Sasikumar K; Wendisch VF; Nampoothiri KM
    AMB Express; 2020 Apr; 10(1):68. PubMed ID: 32296988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process.
    Joo JC; Oh YH; Yu JH; Hyun SM; Khang TU; Kang KH; Song BK; Park K; Oh MK; Lee SY; Park SJ
    Bioresour Technol; 2017 Dec; 245(Pt B):1692-1700. PubMed ID: 28579174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved fermentative production of gamma-aminobutyric acid via the putrescine route: Systems metabolic engineering for production from glucose, amino sugars, and xylose.
    Jorge JM; Nguyen AQ; Pérez-García F; Kind S; Wendisch VF
    Biotechnol Bioeng; 2017 Apr; 114(4):862-873. PubMed ID: 27800627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systems metabolic engineering of Corynebacterium glutamicum eliminates all by-products for selective and high-yield production of the platform chemical 5-aminovalerate.
    Rohles C; Pauli S; Gießelmann G; Kohlstedt M; Becker J; Wittmann C
    Metab Eng; 2022 Sep; 73():168-181. PubMed ID: 35917915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Corynebacterium glutamicum for efficient production of succinic acid from corn stover pretreated by concentrated-alkali under steam-assistant conditions.
    Li K; Li C; Zhao XQ; Liu CG; Bai FW
    Bioresour Technol; 2023 Jun; 378():128991. PubMed ID: 37003455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose.
    Buschke N; Schröder H; Wittmann C
    Biotechnol J; 2011 Mar; 6(3):306-17. PubMed ID: 21298810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable Production of
    Kerbs A; Mindt M; Schwardmann L; Wendisch VF
    Microorganisms; 2021 Apr; 9(4):. PubMed ID: 33924554
    [No Abstract]   [Full Text] [Related]  

  • 17. A 4-hydroxybenzoate 3-hydroxylase mutant enables 4-amino-3-hydroxybenzoic acid production from glucose in Corynebacterium glutamicum.
    Nonaka K; Osamura T; Takahashi F
    Microb Cell Fact; 2023 Aug; 22(1):168. PubMed ID: 37644492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum.
    Wang C; Zhang H; Cai H; Zhou Z; Chen Y; Chen Y; Ouyang P
    Appl Biochem Biotechnol; 2014 Jan; 172(1):340-50. PubMed ID: 24078255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Putrescine production by engineered Corynebacterium glutamicum.
    Schneider J; Wendisch VF
    Appl Microbiol Biotechnol; 2010 Oct; 88(4):859-68. PubMed ID: 20661733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Corynebacterium glutamicum for de novo production of 2-phenylethanol from lignocellulosic biomass hydrolysate.
    Zhu N; Xia W; Wang G; Song Y; Gao X; Liang J; Wang Y
    Biotechnol Biofuels Bioprod; 2023 May; 16(1):75. PubMed ID: 37143059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.