BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 33869222)

  • 1. Molecular Components of Store-Operated Calcium Channels in the Regulation of Neural Stem Cell Physiology, Neurogenesis, and the Pathology of Huntington's Disease.
    Latoszek E; Czeredys M
    Front Cell Dev Biol; 2021; 9():657337. PubMed ID: 33869222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dysregulation of Neuronal Calcium Signaling via Store-Operated Channels in Huntington's Disease.
    Czeredys M
    Front Cell Dev Biol; 2020; 8():611735. PubMed ID: 33425919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. STIM2 Mediates Excessive Store-Operated Calcium Entry in Patient-Specific iPSC-Derived Neurons Modeling a Juvenile Form of Huntington's Disease.
    Vigont VA; Grekhnev DA; Lebedeva OS; Gusev KO; Volovikov EA; Skopin AY; Bogomazova AN; Shuvalova LD; Zubkova OA; Khomyakova EA; Glushankova LN; Klyushnikov SA; Illarioshkin SN; Lagarkova MA; Kaznacheyeva EV
    Front Cell Dev Biol; 2021; 9():625231. PubMed ID: 33604336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Huntingtin-Associated Protein 1A Regulates Store-Operated Calcium Entry in Medium Spiny Neurons From Transgenic YAC128 Mice, a Model of Huntington's Disease.
    Czeredys M; Vigont VA; Boeva VA; Mikoshiba K; Kaznacheyeva EV; Kuznicki J
    Front Cell Neurosci; 2018; 12():381. PubMed ID: 30455632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington's Disease Mouse Model.
    Wu J; Ryskamp DA; Liang X; Egorova P; Zakharova O; Hung G; Bezprozvanny I
    J Neurosci; 2016 Jan; 36(1):125-41. PubMed ID: 26740655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetrahydrocarbazoles decrease elevated SOCE in medium spiny neurons from transgenic YAC128 mice, a model of Huntington's disease.
    Czeredys M; Maciag F; Methner A; Kuznicki J
    Biochem Biophys Res Commun; 2017 Feb; 483(4):1194-1205. PubMed ID: 27553284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Role of Store-Operated Calcium Entry in Acute and Chronic Neurodegenerative Diseases.
    Secondo A; Bagetta G; Amantea D
    Front Mol Neurosci; 2018; 11():87. PubMed ID: 29623030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patient-Specific iPSC-Based Models of Huntington's Disease as a Tool to Study Store-Operated Calcium Entry Drug Targeting.
    Vigont V; Nekrasov E; Shalygin A; Gusev K; Klushnikov S; Illarioshkin S; Lagarkova M; Kiselev SL; Kaznacheyeva E
    Front Pharmacol; 2018; 9():696. PubMed ID: 30008670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manifestation of Huntington's disease pathology in human induced pluripotent stem cell-derived neurons.
    Nekrasov ED; Vigont VA; Klyushnikov SA; Lebedeva OS; Vassina EM; Bogomazova AN; Chestkov IV; Semashko TA; Kiseleva E; Suldina LA; Bobrovsky PA; Zimina OA; Ryazantseva MA; Skopin AY; Illarioshkin SN; Kaznacheyeva EV; Lagarkova MA; Kiselev SL
    Mol Neurodegener; 2016 Apr; 11():27. PubMed ID: 27080129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of TRPC1-Dependent Store-Operated Calcium Entry Improves Synaptic Stability and Motor Performance in a Mouse Model of Huntington's Disease.
    Wu J; Ryskamp D; Birnbaumer L; Bezprozvanny I
    J Huntingtons Dis; 2018; 7(1):35-50. PubMed ID: 29480205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic Analysis of Huntington's Disease Medium Spiny Neurons Identifies Alterations in Lipid Droplets.
    Tshilenge KT; Aguirre CG; Bons J; Gerencser AA; Basisty N; Song S; Rose J; Lopez-Ramirez A; Naphade S; Loureiro A; Battistoni E; Milani M; Wehrfritz C; Holtz A; Hetz C; Mooney SD; Schilling B; Ellerby LM
    Mol Cell Proteomics; 2023 May; 22(5):100534. PubMed ID: 36958627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Both Orai1 and TRPC1 are Involved in Excessive Store-Operated Calcium Entry in Striatal Neurons Expressing Mutant Huntingtin Exon 1.
    Vigont V; Kolobkova Y; Skopin A; Zimina O; Zenin V; Glushankova L; Kaznacheyeva E
    Front Physiol; 2015; 6():337. PubMed ID: 26635623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amelioration of Huntington's disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington's disease monkeys.
    Cho IK; Yang B; Forest C; Qian L; Chan AWS
    PLoS One; 2019; 14(3):e0214156. PubMed ID: 30897183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target Molecules of STIM Proteins in the Central Nervous System.
    Serwach K; Gruszczynska-Biegala J
    Front Mol Neurosci; 2020; 13():617422. PubMed ID: 33424550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular physiology and pathophysiology of stromal interaction molecules.
    Nelson HA; Roe MW
    Exp Biol Med (Maywood); 2018 Mar; 243(5):451-472. PubMed ID: 29363328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between ER Ca
    Nelson HA; Leech CA; Kopp RF; Roe MW
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29783744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human cellular models of medium spiny neuron development and Huntington disease.
    Golas MM
    Life Sci; 2018 Sep; 209():179-196. PubMed ID: 30031060
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 22.