These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 33869245)
1. Prediction of Mortality in Surgical Intensive Care Unit Patients Using Machine Learning Algorithms. Yun K; Oh J; Hong TH; Kim EY Front Med (Lausanne); 2021; 8():621861. PubMed ID: 33869245 [No Abstract] [Full Text] [Related]
2. A proof-of-concept study on mortality prediction with machine learning algorithms using burn intensive care data. Fransén J; Lundin J; Fredén F; Huss F Scars Burn Heal; 2022; 8():20595131211066585. PubMed ID: 35198237 [TBL] [Abstract][Full Text] [Related]
3. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Awad A; Bader-El-Den M; McNicholas J; Briggs J Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626 [TBL] [Abstract][Full Text] [Related]
4. Mortality Prediction in Cerebral Hemorrhage Patients Using Machine Learning Algorithms in Intensive Care Units. Nie X; Cai Y; Liu J; Liu X; Zhao J; Yang Z; Wen M; Liu L Front Neurol; 2020; 11():610531. PubMed ID: 33551969 [No Abstract] [Full Text] [Related]
5. Emergency department triage prediction of clinical outcomes using machine learning models. Raita Y; Goto T; Faridi MK; Brown DFM; Camargo CA; Hasegawa K Crit Care; 2019 Feb; 23(1):64. PubMed ID: 30795786 [TBL] [Abstract][Full Text] [Related]
6. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078 [TBL] [Abstract][Full Text] [Related]
7. Using Machine Learning to Make Predictions in Patients Who Fall. Young AJ; Hare A; Subramanian M; Weaver JL; Kaufman E; Sims C J Surg Res; 2021 Jan; 257():118-127. PubMed ID: 32823009 [TBL] [Abstract][Full Text] [Related]
8. Machine learning applications for the prediction of surgical site infection in neurological operations. Tunthanathip T; Sae-Heng S; Oearsakul T; Sakarunchai I; Kaewborisutsakul A; Taweesomboonyat C Neurosurg Focus; 2019 Aug; 47(2):E7. PubMed ID: 31370028 [TBL] [Abstract][Full Text] [Related]
9. Prediction of Mortality after Burn Surgery in Critically Ill Burn Patients Using Machine Learning Models. Park JH; Cho Y; Shin D; Choi SS J Pers Med; 2022 Aug; 12(8):. PubMed ID: 36013242 [TBL] [Abstract][Full Text] [Related]
10. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards. Churpek MM; Yuen TC; Winslow C; Meltzer DO; Kattan MW; Edelson DP Crit Care Med; 2016 Feb; 44(2):368-74. PubMed ID: 26771782 [TBL] [Abstract][Full Text] [Related]
12. Machine Learning Approaches to Predict In-Hospital Mortality among Neonates with Clinically Suspected Sepsis in the Neonatal Intensive Care Unit. Hsu JF; Chang YF; Cheng HJ; Yang C; Lin CY; Chu SM; Huang HR; Chiang MC; Wang HC; Tsai MH J Pers Med; 2021 Jul; 11(8):. PubMed ID: 34442338 [TBL] [Abstract][Full Text] [Related]
13. Machine Learning-Based Prediction of Clinical Outcomes for Children During Emergency Department Triage. Goto T; Camargo CA; Faridi MK; Freishtat RJ; Hasegawa K JAMA Netw Open; 2019 Jan; 2(1):e186937. PubMed ID: 30646206 [TBL] [Abstract][Full Text] [Related]
14. A machine learning approach to predict early outcomes after pituitary adenoma surgery. Hollon TC; Parikh A; Pandian B; Tarpeh J; Orringer DA; Barkan AL; McKean EL; Sullivan SE Neurosurg Focus; 2018 Nov; 45(5):E8. PubMed ID: 30453460 [TBL] [Abstract][Full Text] [Related]
15. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719 [TBL] [Abstract][Full Text] [Related]
16. Machine learning algorithm to predict mortality in patients undergoing continuous renal replacement therapy. Kang MW; Kim J; Kim DK; Oh KH; Joo KW; Kim YS; Han SS Crit Care; 2020 Feb; 24(1):42. PubMed ID: 32028984 [TBL] [Abstract][Full Text] [Related]
17. Machine learning to predict 30-day quality-adjusted survival in critically ill patients with cancer. Santos HGD; Zampieri FG; Normilio-Silva K; Silva GTD; Lima ACP; Cavalcanti AB; Chiavegatto Filho ADP J Crit Care; 2020 Feb; 55():73-78. PubMed ID: 31715534 [TBL] [Abstract][Full Text] [Related]
18. State of the Art of Machine Learning-Enabled Clinical Decision Support in Intensive Care Units: Literature Review. Hong N; Liu C; Gao J; Han L; Chang F; Gong M; Su L JMIR Med Inform; 2022 Mar; 10(3):e28781. PubMed ID: 35238790 [TBL] [Abstract][Full Text] [Related]
19. An Easy-to-Use Machine Learning Model to Predict the Prognosis of Patients With COVID-19: Retrospective Cohort Study. Kim HJ; Han D; Kim JH; Kim D; Ha B; Seog W; Lee YK; Lim D; Hong SO; Park MJ; Heo J J Med Internet Res; 2020 Nov; 22(11):e24225. PubMed ID: 33108316 [TBL] [Abstract][Full Text] [Related]
20. Derivation and validation of different machine-learning models in mortality prediction of trauma in motorcycle riders: a cross-sectional retrospective study in southern Taiwan. Kuo PJ; Wu SC; Chien PC; Rau CS; Chen YC; Hsieh HY; Hsieh CH BMJ Open; 2018 Jan; 8(1):e018252. PubMed ID: 29306885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]