BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33869675)

  • 1. Roles of miRNAs in spinal cord injury and potential therapeutic interventions.
    Almurshidi B; Carver W; Scott G; Ray SK
    Neuroimmunol Neuroinflamm; 2019; 6():. PubMed ID: 33869675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying the role of microRNAs in spinal cord injury.
    Dong J; Lu M; He X; Xu J; Qin J; Cheng Z; Liang B; Wang D; Li H
    Neurol Sci; 2014 Nov; 35(11):1663-71. PubMed ID: 25231644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of microRNAs in spinal cord injury.
    Shi Z; Zhou H; Lu L; Li X; Fu Z; Liu J; Kang Y; Wei Z; Pan B; Liu L; Kong X; Feng S
    Int J Neurosci; 2017 Dec; 127(12):1104-1115. PubMed ID: 28436759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNAs in contusion spinal cord injury: pathophysiology and clinical utility.
    Li F; Zhou MW
    Acta Neurol Belg; 2019 Mar; 119(1):21-27. PubMed ID: 30790223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. hsa-MiR-19a-3p and hsa-MiR-19b-3p Are Associated with Spinal Cord Injury-Induced Neuropathic Pain: Findings from a Genome-Wide MicroRNA Expression Profiling Screen.
    Ye L; Morse LR; Falci SP; Olson JK; Shrivastava M; Nguyen N; Linnman C; Troy KL; Battaglino RA
    Neurotrauma Rep; 2021; 2(1):424-439. PubMed ID: 34755149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs in spinal cord injury: A narrative review.
    Zhang C; Talifu Z; Xu X; Liu W; Ke H; Pan Y; Li Y; Bai F; Jing Y; Li Z; Li Z; Yang D; Gao F; Du L; Li J; Yu Y
    Front Mol Neurosci; 2023; 16():1099256. PubMed ID: 36818651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of microRNA Markers in the Diagnosis, Treatment, and Outcome Prediction of Spinal Cord Injury.
    Martirosyan NL; Carotenuto A; Patel AA; Kalani MY; Yagmurlu K; Lemole GM; Preul MC; Theodore N
    Front Surg; 2016; 3():56. PubMed ID: 27878119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MiRNAs as Promising Translational Strategies for Neuronal Repair and Regeneration in Spinal Cord Injury.
    Silvestro S; Mazzon E
    Cells; 2022 Jul; 11(14):. PubMed ID: 35883621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. microRNAs in spinal cord injury: potential roles and therapeutic implications.
    Ning B; Gao L; Liu RH; Liu Y; Zhang NS; Chen ZY
    Int J Biol Sci; 2014; 10(9):997-1006. PubMed ID: 25210498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research progress on the regulatory role of microRNAs in spinal cord injury.
    Guo XD; He XG; Yang FG; Liu MQ; Wang YD; Zhu DX; Zhang GZ; Ma ZJ; Kang XW
    Regen Med; 2021 May; 16(5):465-476. PubMed ID: 33955796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA-494 improves functional recovery and inhibits apoptosis by modulating PTEN/AKT/mTOR pathway in rats after spinal cord injury.
    Zhu H; Xie R; Liu X; Shou J; Gu W; Gu S; Che X
    Biomed Pharmacother; 2017 Aug; 92():879-887. PubMed ID: 28601045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Non-coding RNAs as therapeutic targets in spinal cord injury].
    Beylerli OA; Azizova ST; Konovalov NA; Akhmedov AD; Gareev IF; Belogurov AA
    Zh Vopr Neirokhir Im N N Burdenko; 2020; 84(4):104-110. PubMed ID: 32759933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.
    Gaudet AD; Mandrekar-Colucci S; Hall JC; Sweet DR; Schmitt PJ; Xu X; Guan Z; Mo X; Guerau-de-Arellano M; Popovich PG
    J Neurosci; 2016 Aug; 36(32):8516-32. PubMed ID: 27511021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The association between spinal cord trauma-sensitive miRNAs and pain sensitivity, and their regulation by morphine.
    Strickland ER; Woller SA; Hook MA; Grau JW; Miranda RC
    Neurochem Int; 2014 Nov; 77():40-9. PubMed ID: 24867772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory effects of intermittent noxious stimulation on spinal cord injury-sensitive microRNAs and their presumptive targets following spinal cord contusion.
    Strickland ER; Woller SA; Garraway SM; Hook MA; Grau JW; Miranda RC
    Front Neural Circuits; 2014; 8():117. PubMed ID: 25278846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific microRNAs for Modulation of Autophagy in Spinal Cord Injury.
    Visintin R; Ray SK
    Brain Sci; 2022 Feb; 12(2):. PubMed ID: 35204010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corticospinal circuit neuroplasticity may involve silent synapses: Implications for functional recovery facilitated by neuromodulation after spinal cord injury.
    Chen M; Chen Z; Xiao X; Zhou L; Fu R; Jiang X; Pang M; Xia J
    IBRO Neurosci Rep; 2023 Jun; 14():185-194. PubMed ID: 36824667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR-6315 silencing protects against spinal cord injury through the Smo and anti-ferroptosis pathway.
    Ma Z; Fan Y; Peng Y; Bian L; Zhou J; Wang L; Xia Y; Zheng S; Ji Y; Han Y; Feng C; Ba Y
    Biosci Rep; 2023 Apr; 43(4):. PubMed ID: 36946310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knockdown of miR-130a-3p alleviates spinal cord injury induced neuropathic pain by activating IGF-1/IGF-1R pathway.
    Yao L; Guo Y; Wang L; Li G; Qian X; Zhang J; Liu H; Liu G
    J Neuroimmunol; 2021 Feb; 351():577458. PubMed ID: 33360969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics.
    Nieto-Diaz M; Esteban FJ; Reigada D; Muñoz-Galdeano T; Yunta M; Caballero-López M; Navarro-Ruiz R; Del Águila A; Maza RM
    Front Cell Neurosci; 2014; 8():53. PubMed ID: 24701199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.