These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33869967)

  • 1. Combining Multiple Methods for Recycling of Kish Graphite from Steelmaking Slags and Oil Sorption Performance of Kish-Based Expanded Graphite.
    Li J; Liu R; Ma L; Wei L; Cao L; Shen W; Kang F; Huang ZH
    ACS Omega; 2021 Apr; 6(14):9868-9875. PubMed ID: 33869967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the enrichment-purification process and electrochemical performance of kish graphite in dust from blast furnace tapping yard.
    Rong T; Yuan Y; Yang H; Yu H; Zuo H; Wang J; Xue Q
    Waste Manag; 2024 Mar; 175():121-132. PubMed ID: 38194797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kish Graphite Flakes as a Cathode Material for an Aluminum Chloride-Graphite Battery.
    Wang S; Kravchyk KV; Krumeich F; Kovalenko MV
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28478-28485. PubMed ID: 28766336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of airborne and bulk particulate from iron and steel manufacturing facilities.
    Machemer SD
    Environ Sci Technol; 2004 Jan; 38(2):381-9. PubMed ID: 14750711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of expanded graphite's structural and elemental characteristics on its oil and heavy metal sorption properties.
    Coetzee D; Rojviroon T; Niamlang S; Militký J; Wiener J; Večerník J; Melicheríková J; Müllerová J
    Sci Rep; 2024 Jun; 14(1):13716. PubMed ID: 38877151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineralogical characterisation and magnetic separation of vanadium-bearing converter slag.
    Xiang J; Huang Q; Lv W; Pei G; Lv X; Liu S
    Waste Manag Res; 2018 Nov; 36(11):1083-1091. PubMed ID: 30198425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of steel slag in recycling waste activated sludge to produce anaerobic granular sludge.
    Chen L; Huang JJ; Hua B; Droste R; Ali S; Zhao W
    Chemosphere; 2020 Oct; 257():127291. PubMed ID: 32531493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption and regeneration of expanded graphite modified by CTAB-KBr/H
    Xu C; Jiao C; Yao R; Lin A; Jiao W
    Environ Pollut; 2018 Feb; 233():194-200. PubMed ID: 29078123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Preparation and Characterization of MnFe
    Tuan Nguyen HD; Nguyen HT; Nguyen TT; Le Thi AK; Nguyen TD; Phuong Bui QT; Bach LG
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31200537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on the P enrichment and recovery from steelmaking slag: Towards a sustainable P supply and comprehensive utilization of industrial solid wastes.
    Yu YH; Du CM
    Sci Total Environ; 2023 Sep; 891():164578. PubMed ID: 37270006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of magnetic separation to steelmaking slags for reclamation.
    Alanyali H; Cöl M; Yilmaz M; Karagöz S
    Waste Manag; 2006; 26(10):1133-9. PubMed ID: 16545952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries.
    Li J; Wang G; Xu Z
    J Hazard Mater; 2016 Jan; 302():97-104. PubMed ID: 26448495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Biofilms Formed on Steelmaking Slags in Marine Environments for Water Depuration.
    Ogawa A; Tanaka R; Hirai N; Ochiai T; Ohashi R; Fujimoto K; Akatsuka Y; Suzuki M
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32971779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Products of steel slags an opportunity to save natural resources.
    Motz H; Geiseler J
    Waste Manag; 2001; 21(3):285-93. PubMed ID: 11280521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.
    Wang L; Zhu Y; Guo C; Zhu X; Liang J; Qian Y
    ChemSusChem; 2014 Jan; 7(1):87-91. PubMed ID: 24339264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-Principles Understanding of the Staging Properties of the Graphite Intercalation Compounds towards Dual-Ion Battery Applications.
    Zhou W; Sit PH
    ACS Omega; 2020 Jul; 5(29):18289-18300. PubMed ID: 32743204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.
    Kehagia F
    Waste Manag Res; 2009 May; 27(3):288-94. PubMed ID: 19423603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beneficiation of graphite fines from moulding factory wastes.
    Koca S; Koca H
    Waste Manag Res; 2005 Aug; 23(4):338-42. PubMed ID: 16200984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of graphite intercalated compound particle size and exfoliation temperature on porosity and macromolecular diffusion in expanded graphite.
    Goudarzi R; Hashemi Motlagh G
    Heliyon; 2019 Oct; 5(10):e02595. PubMed ID: 31646209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanded Polytetrafluoroethylene/Graphite Composites for Easy Water/Oil Separation.
    Aturaliya R; Wang D; Xu Y; Lin YJ; Li Q; Turng LS
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38241-38248. PubMed ID: 32846495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.