These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Advanced supramolecular design for direct ink writing of soft materials. Tang M; Zhong Z; Ke C Chem Soc Rev; 2023 Mar; 52(5):1614-1649. PubMed ID: 36779285 [TBL] [Abstract][Full Text] [Related]
23. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
24. 3D printability and biochemical analysis of revalorized orange peel waste. Tan JD; Lee CP; Foo SY; Tan JCW; Tan SSY; Ong ES; Leo CH; Hashimoto M Int J Bioprint; 2023; 9(5):776. PubMed ID: 37457944 [TBL] [Abstract][Full Text] [Related]
25. Lignin: A multi-faceted role/function in 3D printing inks. Yang J; An X; Lu B; Cao H; Cheng Z; Tong X; Liu H; Ni Y Int J Biol Macromol; 2024 May; 267(Pt 2):131364. PubMed ID: 38583844 [TBL] [Abstract][Full Text] [Related]
26. Optimizing Process Parameters of Direct Ink Writing for Dimensional Accuracy of Printed Layers. Tu Y; Arrieta-Escobar JA; Hassan A; Zaman UKU; Siadat A; Yang G 3D Print Addit Manuf; 2023 Aug; 10(4):816-827. PubMed ID: 37609589 [TBL] [Abstract][Full Text] [Related]
27. Applicability of UV-Curable Binders in High Solid Suspensions for Direct-Ink-Write 3D Printing in Extremely Cold Temperatures. Marnot A; Konzelman L; Jones JM; Hill C; Brettmann B ACS Appl Mater Interfaces; 2023 Nov; 15(43):50378-50390. PubMed ID: 37862044 [TBL] [Abstract][Full Text] [Related]
34. A Printable Magnetic-Responsive Iron Oxide Nanoparticle (ION)-Gelatin Methacryloyl (GelMA) Ink for Soft Bioactuator/Robot Applications. Yang HW; Yeh NT; Chen TC; Yeh YC; Lee IC; Li YE Polymers (Basel); 2023 Dec; 16(1):. PubMed ID: 38201691 [TBL] [Abstract][Full Text] [Related]
35. Direct-ink-writable nanocellulose ternary hydrogels via one-pot gelation with alginate and calcium montmorillonite. Li H; Xia Y; Guo R; Wang H; Wang X; Yang Z; Zhao Y; Li J; Wang C; Huan S Carbohydr Polym; 2024 Nov; 344():122494. PubMed ID: 39218538 [TBL] [Abstract][Full Text] [Related]
36. Investigation of Biomaterial Ink Viscosity Properties and Optimization of the Printing Process Based on Pattern Path Planning. Wu J; Wu C; Zou S; Li X; Ho B; Sun R; Liu C; Chen M Bioengineering (Basel); 2023 Nov; 10(12):. PubMed ID: 38135949 [TBL] [Abstract][Full Text] [Related]
37. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges. Shahbazi M; Jäger H ACS Appl Bio Mater; 2021 Jan; 4(1):325-369. PubMed ID: 35014287 [TBL] [Abstract][Full Text] [Related]
38. The Effects of Solid Particle Containing Inks on the Printing Quality of Porous Pharmaceutical Structures Fabricated by 3D Semi-Solid Extrusion Printing. Teoh XY; Zhang B; Belton P; Chan SY; Qi S Pharm Res; 2022 Jun; 39(6):1267-1279. PubMed ID: 35661083 [TBL] [Abstract][Full Text] [Related]
39. Rheology in Product Development: An Insight into 3D Printing of Hydrogels and Aerogels. Barrulas RV; Corvo MC Gels; 2023 Dec; 9(12):. PubMed ID: 38131974 [TBL] [Abstract][Full Text] [Related]
40. Continuous Based Direct Ink Write for Tubular Cardiovascular Medical Devices. Casanova-Batlle E; Guerra AJ; Ciurana J Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33379164 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]