These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 33870857)
1. The role of positive charged residue in the proton-transfer mechanism of two-domain laccase from Gabdulkhakov A; Kolyadenko I; Oliveira P; Tamagnini P; Mikhaylina A; Tishchenko S J Biomol Struct Dyn; 2022 Nov; 40(18):8324-8331. PubMed ID: 33870857 [TBL] [Abstract][Full Text] [Related]
2. The role of Asp116 in the reductive cleavage of dioxygen to water in CotA laccase: assistance during the proton-transfer mechanism. Silva CS; Damas JM; Chen Z; Brissos V; Martins LO; Soares CM; Lindley PF; Bento I Acta Crystallogr D Biol Crystallogr; 2012 Feb; 68(Pt 2):186-93. PubMed ID: 22281748 [TBL] [Abstract][Full Text] [Related]
3. Investigations of Accessibility of T2/T3 Copper Center of Two-Domain Laccase from Gabdulkhakov A; Kolyadenko I; Kostareva O; Mikhaylina A; Oliveira P; Tamagnini P; Lisov A; Tishchenko S Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261802 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer. Bento I; Silva CS; Chen Z; Martins LO; Lindley PF; Soares CM BMC Struct Biol; 2010 Sep; 10():28. PubMed ID: 20822511 [TBL] [Abstract][Full Text] [Related]
5. Engineering the Catalytic Properties of Two-Domain Laccase from Kolyadenko I; Scherbakova A; Kovalev K; Gabdulkhakov A; Tishchenko S Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008493 [TBL] [Abstract][Full Text] [Related]
6. The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis. Chen Z; Durão P; Silva CS; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO Dalton Trans; 2010 Mar; 39(11):2875-82. PubMed ID: 20200715 [TBL] [Abstract][Full Text] [Related]
8. Four second-sphere residues of Thermus thermophilus SG0.5JP17-16 laccase tune the catalysis by hydrogen-bonding networks. Liu H; Zhu Y; Yang X; Lin Y Appl Microbiol Biotechnol; 2018 May; 102(9):4049-4061. PubMed ID: 29516147 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. Ferraroni M; Myasoedova NM; Schmatchenko V; Leontievsky AA; Golovleva LA; Scozzafava A; Briganti F BMC Struct Biol; 2007 Sep; 7():60. PubMed ID: 17897461 [TBL] [Abstract][Full Text] [Related]
10. Structural Insight into the Amino Acid Environment of the Two-Domain Laccase's Trinuclear Copper Cluster. Kolyadenko I; Tishchenko S; Gabdulkhakov A Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569288 [TBL] [Abstract][Full Text] [Related]
11. Crystallization and X-ray diffraction studies of a two-domain laccase from Streptomyces griseoflavus. Tishchenko S; Gabdulkhakov A; Trubitsina L; Lisov A; Zakharova M; Leontievsky A Acta Crystallogr F Struct Biol Commun; 2015 Sep; 71(Pt 9):1200-4. PubMed ID: 26323308 [TBL] [Abstract][Full Text] [Related]
12. Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus. Gunne M; Höppner A; Hagedoorn PL; Urlacher VB FEBS J; 2014 Sep; 281(18):4307-18. PubMed ID: 24548692 [TBL] [Abstract][Full Text] [Related]
13. Site-site interactions enhances intramolecular electron transfer in Streptomyces coelicolor laccase. Farver O; Tepper AW; Wherland S; Canters GW; Pecht I J Am Chem Soc; 2009 Dec; 131(51):18226-7. PubMed ID: 19968274 [TBL] [Abstract][Full Text] [Related]
14. Statistical coupling analysis uncovers sites crucial for the proton transfer in laccase Lac15. Wang R; Cheng Y; Xie Y; Li J; Zhang Y; Fang Z; Fang W; Zhang X; Xiao Y Biochem Biophys Res Commun; 2019 Nov; 519(4):894-900. PubMed ID: 31563321 [TBL] [Abstract][Full Text] [Related]
15. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications. Sitarz AK; Mikkelsen JD; Meyer AS Crit Rev Biotechnol; 2016; 36(1):70-86. PubMed ID: 25198436 [TBL] [Abstract][Full Text] [Related]
16. Electron transfer and reaction mechanism of laccases. Jones SM; Solomon EI Cell Mol Life Sci; 2015 Mar; 72(5):869-83. PubMed ID: 25572295 [TBL] [Abstract][Full Text] [Related]
17. Structural study of the X-ray-induced enzymatic reduction of molecular oxygen to water by Steccherinum murashkinskyi laccase: insights into the reaction mechanism. Polyakov KM; Gavryushov S; Ivanova S; Fedorova TV; Glazunova OA; Popov AN; Koroleva OV Acta Crystallogr D Struct Biol; 2017 May; 73(Pt 5):388-401. PubMed ID: 28471364 [TBL] [Abstract][Full Text] [Related]
18. The kinetic role of carboxylate residues in the proximity of the trinuclear centre in the O2 reactivity of CotA-laccase. Brissos V; Chen Z; Martins LO Dalton Trans; 2012 May; 41(20):6247-55. PubMed ID: 22481612 [TBL] [Abstract][Full Text] [Related]
19. Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. Reiss R; Ihssen J; Richter M; Eichhorn E; Schilling B; Thöny-Meyer L PLoS One; 2013; 8(6):e65633. PubMed ID: 23755261 [TBL] [Abstract][Full Text] [Related]
20. Concerted electron/proton transfer mechanism in the oxidation of phenols by laccase. Galli C; Madzak C; Vadalà R; Jolivalt C; Gentili P Chembiochem; 2013 Dec; 14(18):2500-5. PubMed ID: 24151197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]