These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Kohlstedt M; Starck S; Barton N; Stolzenberger J; Selzer M; Mehlmann K; Schneider R; Pleissner D; Rinkel J; Dickschat JS; Venus J; B J H van Duuren J; Wittmann C Metab Eng; 2018 May; 47():279-293. PubMed ID: 29548984 [TBL] [Abstract][Full Text] [Related]
3. Biological Valorization of Lignin-Derived Aromatics in Hydrolysate to Protocatechuic Acid by Engineered Jin X; Li X; Zou L; Zheng Z; Ouyang J Molecules; 2024 Mar; 29(7):. PubMed ID: 38611834 [TBL] [Abstract][Full Text] [Related]
4. Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440. Niu W; Willett H; Mueller J; He X; Kramer L; Ma B; Guo J Metab Eng; 2020 May; 59():151-161. PubMed ID: 32130971 [TBL] [Abstract][Full Text] [Related]
5. Biobased PET from lignin using an engineered cis, cis-muconate-producing Pseudomonas putida strain with superior robustness, energy and redox properties. Kohlstedt M; Weimer A; Weiland F; Stolzenberger J; Selzer M; Sanz M; Kramps L; Wittmann C Metab Eng; 2022 Jul; 72():337-352. PubMed ID: 35545205 [TBL] [Abstract][Full Text] [Related]
6. Protocatechuic acid production from lignin-associated phenolics. Upadhyay P; Lali A Prep Biochem Biotechnol; 2021; 51(10):979-984. PubMed ID: 33583338 [TBL] [Abstract][Full Text] [Related]
7. Computationally Prospecting Potential Pathways from Lignin Monomers and Dimers toward Aromatic Compounds. Wang L; Maranas CD ACS Synth Biol; 2021 May; 10(5):1064-1076. PubMed ID: 33877818 [TBL] [Abstract][Full Text] [Related]
8. Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. Johnson CW; Beckham GT Metab Eng; 2015 Mar; 28():240-247. PubMed ID: 25617773 [TBL] [Abstract][Full Text] [Related]
9. Production of Substituted Styrene Bioproducts from Lignin and Lignocellulose Using Engineered Pseudomonas putida KT2440. Williamson JJ; Bahrin N; Hardiman EM; Bugg TDH Biotechnol J; 2020 Jul; 15(7):e1900571. PubMed ID: 32488970 [TBL] [Abstract][Full Text] [Related]
10. Toward engineering Wu W; Liu F; Singh S Proc Natl Acad Sci U S A; 2018 Mar; 115(12):2970-2975. PubMed ID: 29500185 [TBL] [Abstract][Full Text] [Related]
11. Synthetic metabolic pathway for the production of 1-alkenes from lignin-derived molecules. Luo J; Lehtinen T; Efimova E; Santala V; Santala S Microb Cell Fact; 2019 Mar; 18(1):48. PubMed ID: 30857542 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing. Wang X; Lin L; Dong J; Ling J; Wang W; Wang H; Zhang Z; Yu X Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030226 [TBL] [Abstract][Full Text] [Related]
13. Engineering Pseudomonas putida for improved utilization of syringyl aromatics. Mueller J; Willett H; Feist AM; Niu W Biotechnol Bioeng; 2022 Sep; 119(9):2541-2550. PubMed ID: 35524438 [TBL] [Abstract][Full Text] [Related]
14. Microbial conversion of lignin rich biomass hydrolysates to medium chain length polyhydroxyalkanoates (mcl-PHA) using Bellary S; Patil M; Mahesh A; Lali A Prep Biochem Biotechnol; 2023; 53(1):54-63. PubMed ID: 35266860 [TBL] [Abstract][Full Text] [Related]
15. RB-TnSeq identifies genetic targets for improved tolerance of Pseudomonas putida towards compounds relevant to lignin conversion. Borchert AJ; Bleem A; Beckham GT Metab Eng; 2023 May; 77():208-218. PubMed ID: 37059293 [TBL] [Abstract][Full Text] [Related]
16. Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid. Notonier S; Werner AZ; Kuatsjah E; Dumalo L; Abraham PE; Hatmaker EA; Hoyt CB; Amore A; Ramirez KJ; Woodworth SP; Klingeman DM; Giannone RJ; Guss AM; Hettich RL; Eltis LD; Johnson CW; Beckham GT Metab Eng; 2021 May; 65():111-122. PubMed ID: 33741529 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440. Xu Z; Pan C; Li X; Hao N; Zhang T; Gaffrey MJ; Pu Y; Cort JR; Ragauskas AJ; Qian WJ; Yang B Biotechnol Biofuels; 2021 Jan; 14(1):11. PubMed ID: 33413621 [TBL] [Abstract][Full Text] [Related]
18. Channelling carbon flux through the meta-cleavage route for improved poly(3-hydroxyalkanoate) production from benzoate and lignin-based aromatics in Pseudomonas putida H. Borrero-de Acuña JM; Gutierrez-Urrutia I; Hidalgo-Dumont C; Aravena-Carrasco C; Orellana-Saez M; Palominos-Gonzalez N; van Duuren JBJH; Wagner V; Gläser L; Becker J; Kohlstedt M; Zacconi FC; Wittmann C; Poblete-Castro I Microb Biotechnol; 2021 Nov; 14(6):2385-2402. PubMed ID: 33171015 [TBL] [Abstract][Full Text] [Related]
19. Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid. Elmore JR; Dexter GN; Salvachúa D; O'Brien M; Klingeman DM; Gorday K; Michener JK; Peterson DJ; Beckham GT; Guss AM Metab Eng; 2020 Nov; 62():62-71. PubMed ID: 32828991 [TBL] [Abstract][Full Text] [Related]