These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Hydrogenative Cycloisomerization and Sigmatropic Rearrangement Reactions of Cationic Ruthenium Carbenes Formed by Catalytic Alkyne gem-Hydrogenation. Biberger T; Hess SN; Leutzsch M; Fürstner A Angew Chem Int Ed Engl; 2022 Feb; 61(8):e202113827. PubMed ID: 34911159 [TBL] [Abstract][Full Text] [Related]
10. Triazole-modified Ru-carbene complexes: A valid olefin metathesis pre-catalyst for dynamic covalent chemistry via C=C bond formation. Wang C; Zhang S; Yuan T; Jimoh AA; Abreu M; Shan C; Wojtas L; Xing Y; Hong X; Shi X Chem Catal; 2023 Aug; 3(8):. PubMed ID: 37873035 [TBL] [Abstract][Full Text] [Related]
11. The influence of the cationic carbenes on the initiation kinetics of ruthenium-based metathesis catalysts; a DFT study. Jawiczuk M; Janaszkiewicz A; Trzaskowski B Beilstein J Org Chem; 2018; 14():2872-2880. PubMed ID: 30546471 [TBL] [Abstract][Full Text] [Related]
12. Routes to High-Performing Ruthenium-Iodide Catalysts for Olefin Metathesis: Ligand Lability Is Key to Efficient Halide Exchange. Blanco CO; Nascimento DL; Fogg DE Organometallics; 2021 Jun; 40(12):1811-1816. PubMed ID: 34295013 [TBL] [Abstract][Full Text] [Related]
13. Alkyne gem-Hydrogenation: Formation of Pianostool Ruthenium Carbene Complexes and Analysis of Their Chemical Character. Biberger T; Gordon CP; Leutzsch M; Peil S; Guthertz A; Copéret C; Fürstner A Angew Chem Int Ed Engl; 2019 Jun; 58(26):8845-8850. PubMed ID: 31025788 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic Divergence in the Hydrogenative Synthesis of Furans and Butenolides: Ruthenium Carbenes Formed by gem-Hydrogenation or through Carbophilic Activation of Alkynes. Peil S; Fürstner A Angew Chem Int Ed Engl; 2019 Dec; 58(51):18476-18481. PubMed ID: 31609498 [TBL] [Abstract][Full Text] [Related]
15. Reactivity of Metal Carbenes with Olefins: Theoretical Insights on the Carbene Electronic Structure and Cyclopropanation Reaction Mechanism. de Brito Sá E; Rimola A; Rodríguez-Santiago L; Sodupe M; Solans-Monfort X J Phys Chem A; 2018 Feb; 122(6):1702-1712. PubMed ID: 29338237 [TBL] [Abstract][Full Text] [Related]
17. Quantitative catalyst-substrate association relationships between metathesis molybdenum or ruthenium carbene complexes and their substrates. Kim KH; Ok T; Lee K; Lee HS; Chang KT; Ihee H; Sohn JH J Am Chem Soc; 2010 Sep; 132(34):12027-33. PubMed ID: 20698535 [TBL] [Abstract][Full Text] [Related]
18. Nitro and Other Electron Withdrawing Group Activated Ruthenium Catalysts for Olefin Metathesis Reactions. Kajetanowicz A; Grela K Angew Chem Int Ed Engl; 2021 Jun; 60(25):13738-13756. PubMed ID: 32808704 [TBL] [Abstract][Full Text] [Related]
19. Ruthenium Trichloride, Tricyclohexyl- phosphane, 1-Alkynes, Magnesium, Hydrogen, and Water-Ingredients of an Efficient One-Pot Synthesis of Ruthenium Catalysts for Olefin Metathesis. Wolf J; Stüer W; Grünwald C; Werner H; Schwab P; Schulz M Angew Chem Int Ed Engl; 1998 May; 37(8):1124-1126. PubMed ID: 29711032 [TBL] [Abstract][Full Text] [Related]
20. Impact of the Carbene Derivative Charge on the Decomposition Rates of Hoveyda-Grubbs-like Metathesis Catalysts. Jawiczuk M; Marczyk A; Młodzikowska-Pieńko K; Trzaskowski B J Phys Chem A; 2020 Jul; 124(30):6158-6167. PubMed ID: 32639748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]