BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33871652)

  • 1. Complex evolution of novel red floral color in Petunia.
    Berardi AE; Esfeld K; Jäggi L; Mandel T; Cannarozzi GM; Kuhlemeier C
    Plant Cell; 2021 Aug; 33(7):2273-2295. PubMed ID: 33871652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudogenization and Resurrection of a Speciation Gene.
    Esfeld K; Berardi AE; Moser M; Bossolini E; Freitas L; Kuhlemeier C
    Curr Biol; 2018 Dec; 28(23):3776-3786.e7. PubMed ID: 30472000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning.
    Albert NW; Lewis DH; Zhang H; Schwinn KE; Jameson PE; Davies KM
    Plant J; 2011 Mar; 65(5):771-84. PubMed ID: 21235651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color.
    Quattrocchio F; Wing J; van der Woude K; Souer E; de Vetten N; Mol J; Koes R
    Plant Cell; 1999 Aug; 11(8):1433-44. PubMed ID: 10449578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two R2R3-MYB genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower Tepals, tepal spots and leaves of asiatic hybrid lily.
    Yamagishi M; Shimoyamada Y; Nakatsuka T; Masuda K
    Plant Cell Physiol; 2010 Mar; 51(3):463-74. PubMed ID: 20118109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological changes besides the enhancement of pigmentation in Petunia hybrida caused by overexpression of PhAN2, an R2R3-MYB transcription factor.
    Li G; Serek M; Gehl C
    Plant Cell Rep; 2023 Mar; 42(3):609-627. PubMed ID: 36690873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel R2R3-MYB from grape hyacinth, MaMybA, which is different from MaAN2, confers intense and magenta anthocyanin pigmentation in tobacco.
    Chen K; Du L; Liu H; Liu Y
    BMC Plant Biol; 2019 Sep; 19(1):390. PubMed ID: 31500571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-scale transcriptional study of hybrid effects and regulatory divergence in an F
    Zhuang Y; Tripp EA
    BMC Plant Biol; 2017 Jan; 17(1):15. PubMed ID: 28095782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inflorescence architecture: the transition from branches to flowers.
    Hake S
    Curr Biol; 2008 Dec; 18(23):R1106-8. PubMed ID: 19081048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chimeric repressor of petunia PH4 R2R3-MYB family transcription factor generates margined flowers in torenia.
    Kasajima I; Sasaki K
    Plant Signal Behav; 2016 May; 11(5):e1177693. PubMed ID: 27089475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers.
    Ben Zvi MM; Negre-Zakharov F; Masci T; Ovadis M; Shklarman E; Ben-Meir H; Tzfira T; Dudareva N; Vainstein A
    Plant Biotechnol J; 2008 May; 6(4):403-15. PubMed ID: 18346094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia.
    Boase MR; Brendolise C; Wang L; Ngo H; Espley RV; Hellens RP; Schwinn KE; Davies KM; Albert NW
    Plant Cell Rep; 2015 Oct; 34(10):1817-23. PubMed ID: 26113165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PhAAT1, encoding an anthocyanin acyltransferase, is transcriptionally regulated by PhAN2 in petunia.
    Chen Z; Yuan J; Yao Y; Cao J; Yang W; Long Y; Liu J; Yang W
    Physiol Plant; 2023 Jan; 175(1):e13851. PubMed ID: 36631431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin.
    Jung CS; Griffiths HM; De Jong DM; Cheng S; Bodis M; Kim TS; De Jong WS
    Theor Appl Genet; 2009 Dec; 120(1):45-57. PubMed ID: 19779693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene loss and parallel evolution contribute to species difference in flower color.
    Smith SD; Rausher MD
    Mol Biol Evol; 2011 Oct; 28(10):2799-810. PubMed ID: 21551271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollinator choice in Petunia depends on two major genetic Loci for floral scent production.
    Klahre U; Gurba A; Hermann K; Saxenhofer M; Bossolini E; Guerin PM; Kuhlemeier C
    Curr Biol; 2011 May; 21(9):730-9. PubMed ID: 21497087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers.
    Liu F; Xiao Z; Yang L; Chen Q; Shao L; Liu J; Yu Y
    New Phytol; 2017 Sep; 215(4):1490-1502. PubMed ID: 28675474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PhMYB4 fine-tunes the floral volatile signature of Petunia x hybrida through PhC4H.
    Colquhoun TA; Kim JY; Wedde AE; Levin LA; Schmitt KC; Schuurink RC; Clark DG
    J Exp Bot; 2011 Jan; 62(3):1133-43. PubMed ID: 21068208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flower Development in the Solanaceae.
    Monniaux M; Vandenbussche M
    Methods Mol Biol; 2023; 2686():39-58. PubMed ID: 37540353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric effects of loss and gain of a floral trait on pollinator preference.
    Dell'Olivo A; Kuhlemeier C
    Evolution; 2013 Oct; 67(10):3023-31. PubMed ID: 24094351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.