These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33871654)

  • 1. The SvFUL2 transcription factor is required for inflorescence determinacy and timely flowering in Setaria viridis.
    Yang J; Bertolini E; Braud M; Preciado J; Chepote A; Jiang H; Eveland AL
    Plant Physiol; 2021 Nov; 187(3):1202-1220. PubMed ID: 33871654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brassinosteroids Modulate Meristem Fate and Differentiation of Unique Inflorescence Morphology in
    Yang J; Thames S; Best NB; Jiang H; Huang P; Dilkes BP; Eveland AL
    Plant Cell; 2018 Jan; 30(1):48-66. PubMed ID: 29263085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grass meristems II: inflorescence architecture, flower development and meristem fate.
    Tanaka W; Pautler M; Jackson D; Hirano HY
    Plant Cell Physiol; 2013 Mar; 54(3):313-24. PubMed ID: 23378448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GIF1 controls ear inflorescence architecture and floral development by regulating key genes in hormone biosynthesis and meristem determinacy in maize.
    Li M; Zheng Y; Cui D; Du Y; Zhang D; Sun W; Du H; Zhang Z
    BMC Plant Biol; 2022 Mar; 22(1):127. PubMed ID: 35303806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SiMADS34, an E-class MADS-box transcription factor, regulates inflorescence architecture and grain yield in Setaria italica.
    Hussin SH; Wang H; Tang S; Zhi H; Tang C; Zhang W; Jia G; Diao X
    Plant Mol Biol; 2021 Mar; 105(4-5):419-434. PubMed ID: 33231834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory modules controlling maize inflorescence architecture.
    Eveland AL; Goldshmidt A; Pautler M; Morohashi K; Liseron-Monfils C; Lewis MW; Kumari S; Hiraga S; Yang F; Unger-Wallace E; Olson A; Hake S; Vollbrecht E; Grotewold E; Ware D; Jackson D
    Genome Res; 2014 Mar; 24(3):431-43. PubMed ID: 24307553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato.
    Jiang X; Lubini G; Hernandes-Lopes J; Rijnsburger K; Veltkamp V; de Maagd RA; Angenent GC; Bemer M
    Plant Cell; 2022 Mar; 34(3):1002-1019. PubMed ID: 34893888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grass inflorescence architecture and meristem determinacy.
    Bommert P; Whipple C
    Semin Cell Dev Biol; 2018 Jul; 79():37-47. PubMed ID: 29020602
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Ma YQ; Pu ZQ; Tan XM; Meng Q; Zhang KL; Yang L; Ma YY; Huang X; Xu ZQ
    PeerJ; 2022; 10():e13034. PubMed ID: 35251790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1.
    Ikeda-Kawakatsu K; Maekawa M; Izawa T; Itoh J; Nagato Y
    Plant J; 2012 Jan; 69(1):168-80. PubMed ID: 21910771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sparse panicle1 is required for inflorescence development in Setaria viridis and maize.
    Huang P; Jiang H; Zhu C; Barry K; Jenkins J; Sandor L; Schmutz J; Box MS; Kellogg EA; Brutnell TP
    Nat Plants; 2017 Apr; 3():17054. PubMed ID: 28418381
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Zhong J; van Esse GW; Bi X; Lan T; Walla A; Sang Q; Franzen R; von Korff M
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33593903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Dynamic Co-expression Map of Early Inflorescence Development in
    Zhu C; Yang J; Box MS; Kellogg EA; Eveland AL
    Front Plant Sci; 2018; 9():1309. PubMed ID: 30258452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant Inflorescence Architecture: The Formation, Activity, and Fate of Axillary Meristems.
    Zhu Y; Wagner D
    Cold Spring Harb Perspect Biol; 2020 Jan; 12(1):. PubMed ID: 31308142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interspecies transfer of RAMOSA1 orthologs and promoter cis sequences impacts maize inflorescence architecture.
    Strable J; Unger-Wallace E; Aragón Raygoza A; Briggs S; Vollbrecht E
    Plant Physiol; 2023 Feb; 191(2):1084-1101. PubMed ID: 36508348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crop reproductive meristems in the genomic era: a brief overview.
    Caselli F; Zanarello F; Kater MM; Battaglia R; Gregis V
    Biochem Soc Trans; 2020 Jun; 48(3):853-865. PubMed ID: 32573650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1.
    Chuck G; Meeley R; Hake S
    Development; 2008 Sep; 135(18):3013-9. PubMed ID: 18701544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The indeterminate floral apex1 gene regulates meristem determinacy and identity in the maize inflorescence.
    Laudencia-Chingcuanco D; Hake S
    Development; 2002 Jun; 129(11):2629-38. PubMed ID: 12015291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pleiotropic and nonredundant effects of an auxin importer in Setaria and maize.
    Zhu C; Box MS; Thiruppathi D; Hu H; Yu Y; Martin C; Doust AN; McSteen P; Kellogg EA
    Plant Physiol; 2022 Jun; 189(2):715-734. PubMed ID: 35285930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The
    Zhu C; Liu L; Crowell O; Zhao H; Brutnell TP; Jackson D; Kellogg EA
    Front Plant Sci; 2021; 12():636749. PubMed ID: 33659018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.