These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33871722)

  • 1. Dynamic heterogeneity, cooperative motion, and Johari-Goldstein [Formula: see text]-relaxation in a metallic glass-forming material exhibiting a fragile-to-strong transition.
    Zhang H; Wang X; Yu HB; Douglas JF
    Eur Phys J E Soft Matter; 2021 Apr; 44(4):56. PubMed ID: 33871722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal nature of dynamic heterogeneity in glass-forming liquids: A comparative study of metallic and polymeric glass-forming liquids.
    Wang X; Xu WS; Zhang H; Douglas JF
    J Chem Phys; 2019 Nov; 151(18):184503. PubMed ID: 31731847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast dynamics in a model metallic glass-forming material.
    Zhang H; Wang X; Yu HB; Douglas JF
    J Chem Phys; 2021 Feb; 154(8):084505. PubMed ID: 33639730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization model description of the interfacial dynamics of crystalline Cu and [Formula: see text] metallic glass nanoparticles.
    Mahmud G; Zhang H; Douglas JF
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):33. PubMed ID: 33728521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural origins of Johari-Goldstein relaxation in a metallic glass.
    Liu YH; Fujita T; Aji DP; Matsuura M; Chen MW
    Nat Commun; 2014; 5():3238. PubMed ID: 24488115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol.
    Yardimci H; Leheny RL
    J Chem Phys; 2006 Jun; 124(21):214503. PubMed ID: 16774419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Picosecond dynamic heterogeneity, hopping, and Johari-Goldstein relaxation in glass-forming liquids.
    Cicerone MT; Zhong Q; Tyagi M
    Phys Rev Lett; 2014 Sep; 113(11):117801. PubMed ID: 25260005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The JG β-relaxation in water and impact on the dynamics of aqueous mixtures and hydrated biomolecules.
    Capaccioli S; Ngai KL; Ancherbak S; Bertoldo M; Ciampalini G; Thayyil MS; Wang LM
    J Chem Phys; 2019 Jul; 151(3):034504. PubMed ID: 31325935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutual Information in Molecular and Macromolecular Systems.
    Tripodo A; Puosi F; Malvaldi M; Leporini D
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys.
    Zhang H; Zhong C; Douglas JF; Wang X; Cao Q; Zhang D; Jiang JZ
    J Chem Phys; 2015 Apr; 142(16):164506. PubMed ID: 25933773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of Caged Molecule Dynamics to JG β-Relaxation II: Polymers.
    Ngai KL; Capaccioli S; Prevosto D; Wang LM
    J Phys Chem B; 2015 Sep; 119(38):12502-18. PubMed ID: 26317769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of hydration water in gelatin and hyaluronic acid hydrogels.
    Kripotou S; Zafeiris K; Culebras-Martínez M; Gallego Ferrer G; Kyritsis A
    Eur Phys J E Soft Matter; 2019 Aug; 42(8):109. PubMed ID: 31444585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid.
    Puosi F; Jakse N; Pasturel A
    J Phys Condens Matter; 2018 Apr; 30(14):145701. PubMed ID: 29465041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses.
    Yu HB; Richert R; Samwer K
    Sci Adv; 2017 Nov; 3(11):e1701577. PubMed ID: 29159283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of the Johari-Goldstein process in rigid asymmetric molecules.
    Fragiadakis D; Roland CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042307. PubMed ID: 24229172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoupling of surface diffusion and relaxation dynamics of molecular glasses.
    Zhang Y; Fakhraai Z
    Proc Natl Acad Sci U S A; 2017 May; 114(19):4915-4919. PubMed ID: 28373544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous-time random-walk approach to supercooled liquids: Self-part of the van Hove function and related quantities.
    Helfferich J; Brisch J; Meyer H; Benzerara O; Ziebert F; Farago J; Baschnagel J
    Eur Phys J E Soft Matter; 2018 Jun; 41(6):71. PubMed ID: 29876655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coincident Correlation between Vibrational Dynamics and Primary Relaxation of Polymers with Strong or Weak Johari-Goldstein Relaxation.
    Tripodo A; Puosi F; Malvaldi M; Capaccioli S; Leporini D
    Polymers (Basel); 2020 Mar; 12(4):. PubMed ID: 32244537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cooperative free volume rate model for segmental dynamics: Application to glass-forming liquids and connections with the density scaling approach
    White RP; Lipson JEG
    Eur Phys J E Soft Matter; 2019 Aug; 42(8):100. PubMed ID: 31396721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic understanding of the Johari-Goldstein β relaxation gained from nuclear γ-resonance time-domain-interferometry experiments.
    Ngai KL
    Phys Rev E; 2021 Jul; 104(1-2):015103. PubMed ID: 34412284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.