These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 33871766)
1. Glucan Conversion and Membrane Recovery of Biomimetic Cellulosomes During Lignocellulosic Biomass Hydrolysis. Hammed A; Polunin Y; Voronov A; W Pryor S Appl Biochem Biotechnol; 2021 Sep; 193(9):2830-2842. PubMed ID: 33871766 [TBL] [Abstract][Full Text] [Related]
2. Magnetic nickel nanostructure as cellulase immobilization surface for the hydrolysis of lignocellulosic biomass. Rashid SS; Mustafa AH; Rahim MHA; Gunes B Int J Biol Macromol; 2022 Jun; 209(Pt A):1048-1053. PubMed ID: 35447264 [TBL] [Abstract][Full Text] [Related]
3. Novel Magnetic Cross-Linked Cellulase Aggregates with a Potential Application in Lignocellulosic Biomass Bioconversion. Jia J; Zhang W; Yang Z; Yang X; Wang N; Yu X Molecules; 2017 Feb; 22(2):. PubMed ID: 28208644 [TBL] [Abstract][Full Text] [Related]
4. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: An all-inclusive review. Xu C; Tong S; Sun L; Gu X Carbohydr Polym; 2023 Dec; 321():121319. PubMed ID: 37739542 [TBL] [Abstract][Full Text] [Related]
5. Enzyme immobilization with nanomaterials for hydrolysis of lignocellulosic biomass: Challenges and future Perspectives. Kotwal N; Pathania D; Singh A; Din Sheikh ZU; Kothari R Carbohydr Res; 2024 Sep; 543():109208. PubMed ID: 39013334 [TBL] [Abstract][Full Text] [Related]
7. Stable cellulase immobilized on graphene oxide@CMC-g-poly(AMPS-co-AAm) hydrogel for enhanced enzymatic hydrolysis of lignocellulosic biomass. Ariaeenejad S; Motamedi E; Hosseini Salekdeh G Carbohydr Polym; 2020 Feb; 230():115661. PubMed ID: 31887893 [TBL] [Abstract][Full Text] [Related]
8. Cellulase retention and sugar removal by membrane ultrafiltration during lignocellulosic biomass hydrolysis. Knutsen JS; Davis RH Appl Biochem Biotechnol; 2004; 113-116():585-99. PubMed ID: 15054279 [TBL] [Abstract][Full Text] [Related]
9. Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Zhu Z; Sathitsuksanoh N; Percival Zhang YH Analyst; 2009 Nov; 134(11):2267-72. PubMed ID: 19838414 [TBL] [Abstract][Full Text] [Related]
10. Immobilization of beta-glucosidase on Eupergit C for lignocellulose hydrolysis. Tu M; Zhang X; Kurabi A; Gilkes N; Mabee W; Saddler J Biotechnol Lett; 2006 Feb; 28(3):151-6. PubMed ID: 16489491 [TBL] [Abstract][Full Text] [Related]
11. Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings. Sathitsuksanoh N; Zhu Z; Ho TJ; Bai MD; Zhang YH Bioresour Technol; 2010 Jul; 101(13):4926-9. PubMed ID: 19854047 [TBL] [Abstract][Full Text] [Related]
12. Temperature sensitivity of cellulase adsorption on lignin and its impact on enzymatic hydrolysis of lignocellulosic biomass. Zheng Y; Zhang S; Miao S; Su Z; Wang P J Biotechnol; 2013 Jul; 166(3):135-43. PubMed ID: 23648794 [TBL] [Abstract][Full Text] [Related]
13. Modeling the Effect of pH and Temperature for Cellulases Immobilized on Enzymogel Nanoparticles. Samaratunga A; Kudina O; Nahar N; Zakharchenko A; Minko S; Voronov A; Pryor SW Appl Biochem Biotechnol; 2015 Jun; 176(4):1114-30. PubMed ID: 25935220 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of free and immobilized cellulase on chitosan-modified magnetic nanoparticles for saccharification of sorghum residue. Punia P; Singh L Bioprocess Biosyst Eng; 2024 May; 47(5):737-751. PubMed ID: 38607415 [TBL] [Abstract][Full Text] [Related]
15. Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass. Yu Z; Gwak KS; Treasure T; Jameel H; Chang HM; Park S ChemSusChem; 2014 Jul; 7(7):1942-50. PubMed ID: 24903047 [TBL] [Abstract][Full Text] [Related]
16. Impact of surfactants on pretreatment of corn stover. Qing Q; Yang B; Wyman CE Bioresour Technol; 2010 Aug; 101(15):5941-51. PubMed ID: 20304637 [TBL] [Abstract][Full Text] [Related]
17. Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate. Lou H; Wang M; Lai H; Lin X; Zhou M; Yang D; Qiu X Bioresour Technol; 2013 Oct; 146():478-484. PubMed ID: 23958680 [TBL] [Abstract][Full Text] [Related]
18. The mechanism of poly(ethylene glycol) 4000 effect on enzymatic hydrolysis of lignocellulose. Li J; Li S; Fan C; Yan Z Colloids Surf B Biointerfaces; 2012 Jan; 89():203-10. PubMed ID: 21982216 [TBL] [Abstract][Full Text] [Related]
19. Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. Nguyen TY; Cai CM; Kumar R; Wyman CE ChemSusChem; 2015 May; 8(10):1716-25. PubMed ID: 25677100 [TBL] [Abstract][Full Text] [Related]
20. Advances in improving the performance of cellulase in ionic liquids for lignocellulose biorefinery. Xu J; Xiong P; He B Bioresour Technol; 2016 Jan; 200():961-70. PubMed ID: 26602145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]