BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33872159)

  • 1. Adaptive Dropout Method Based on Biological Principles.
    Li H; Weng J; Mao Y; Wang Y; Zhan Y; Cai Q; Gu W
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):4267-4276. PubMed ID: 33872159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spiking Neural Network Regularization With Fixed and Adaptive Drop-Keep Probabilities.
    Zhao J; Yang J; Wang J; Wu W
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):4096-4109. PubMed ID: 33571100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Stochastic Delta Rule: Faster and More Accurate Deep Learning Through Adaptive Weight Noise.
    Frazier-Logue N; Hanson SJ
    Neural Comput; 2020 May; 32(5):1018-1032. PubMed ID: 32187001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced Dropout: A Model-Free Methodology for Bayesian Dropout Optimization.
    Xie J; Ma Z; Lei J; Zhang G; Xue JH; Tan ZH; Guo J
    IEEE Trans Pattern Anal Mach Intell; 2022 Sep; 44(9):4605-4625. PubMed ID: 34029187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regularization of deep neural networks with spectral dropout.
    Khan SH; Hayat M; Porikli F
    Neural Netw; 2019 Feb; 110():82-90. PubMed ID: 30504041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new optimized GA-RBF neural network algorithm.
    Jia W; Zhao D; Shen T; Su C; Hu C; Zhao Y
    Comput Intell Neurosci; 2014; 2014():982045. PubMed ID: 25371666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of Fault Prediction System for Electromechanical Sensor Equipment Based on Deep Learning.
    Ding Y; Wu H; Zhou K
    Comput Intell Neurosci; 2022; 2022():3057167. PubMed ID: 35341188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forward propagation dropout in deep neural networks using Jensen-Shannon and random forest feature importance ranking.
    Heidari M; Moattar MH; Ghaffari H
    Neural Netw; 2023 Aug; 165():238-247. PubMed ID: 37307667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Correspondence Between Normalization Strategies in Artificial and Biological Neural Networks.
    Shen Y; Wang J; Navlakha S
    Neural Comput; 2021 Nov; 33(12):3179-3203. PubMed ID: 34474484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximum Relevance Minimum Redundancy Dropout with Informative Kernel Determinantal Point Process.
    Saffari M; Khodayar M; Ebrahimi Saadabadi MS; Sequeira AF; Cardoso JS
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biologically plausible deep learning - But how far can we go with shallow networks?
    Illing B; Gerstner W; Brea J
    Neural Netw; 2019 Oct; 118():90-101. PubMed ID: 31254771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification capacity of a modular neural network implementing neurally inspired architecture and training rules.
    Poirazi P; Neocleous C; Pattichis CS; Schizas CN
    IEEE Trans Neural Netw; 2004 May; 15(3):597-612. PubMed ID: 15384548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous Dropout.
    Shen X; Tian X; Liu T; Xu F; Tao D
    IEEE Trans Neural Netw Learn Syst; 2018 Sep; 29(9):3926-3937. PubMed ID: 28981433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Global Sliding-Mode Control for Dynamic Systems Using Double Hidden Layer Recurrent Neural Network Structure.
    Chu Y; Fei J; Hou S
    IEEE Trans Neural Netw Learn Syst; 2020 Apr; 31(4):1297-1309. PubMed ID: 31247575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructing Perceived Images From Human Brain Activities With Bayesian Deep Multiview Learning.
    Du C; Du C; Huang L; He H
    IEEE Trans Neural Netw Learn Syst; 2019 Aug; 30(8):2310-2323. PubMed ID: 30561354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tweaking Deep Neural Networks.
    Kim J; Yoon H; Kim MS
    IEEE Trans Pattern Anal Mach Intell; 2022 Sep; 44(9):5715-5728. PubMed ID: 33979278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biased Dropout and Crossmap Dropout: Learning towards effective Dropout regularization in convolutional neural network.
    Poernomo A; Kang DK
    Neural Netw; 2018 Aug; 104():60-67. PubMed ID: 29715684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the Structure and Functional Properties of the Dropout-Induced Correlated Variability in Convolutional Neural Networks.
    Pan X; Coen-Cagli R; Schwartz O
    Neural Comput; 2024 Mar; 36(4):621-644. PubMed ID: 38457752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pattern Recognition of Spiking Neural Networks Based on Visual Mechanism and Supervised Synaptic Learning.
    Li X; Yi H; Luo S
    Neural Plast; 2020; 2020():8851351. PubMed ID: 33193755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extreme neural machines.
    Boucher-Routhier M; Zhang BLF; Thivierge JP
    Neural Netw; 2021 Dec; 144():639-647. PubMed ID: 34656050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.