These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 3387220)
1. Unusual duplex formation in purine rich oligodeoxyribonucleotides. Wilson WD; Dotrong MH; Zuo ET; Zon G Nucleic Acids Res; 1988 Jun; 16(11):5137-51. PubMed ID: 3387220 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamics of DNA duplexes with adjacent G.A mismatches. Li Y; Zon G; Wilson WD Biochemistry; 1991 Jul; 30(30):7566-72. PubMed ID: 1854755 [TBL] [Abstract][Full Text] [Related]
3. Parallel-stranded duplex DNA containing blocks of trans purine-purine and purine-pyrimidine base pairs. Evertsz EM; Rippe K; Jovin TM Nucleic Acids Res; 1994 Aug; 22(16):3293-303. PubMed ID: 8078763 [TBL] [Abstract][Full Text] [Related]
4. NMR and molecular modeling evidence for a G.A mismatch base pair in a purine-rich DNA duplex. Li Y; Zon G; Wilson WD Proc Natl Acad Sci U S A; 1991 Jan; 88(1):26-30. PubMed ID: 1986374 [TBL] [Abstract][Full Text] [Related]
5. N(4)C-ethyl-N(4)C cross-linked DNA: synthesis and characterization of duplexes with interstrand cross-links of different orientations. Noronha AM; Noll DM; Wilds CJ; Miller PS Biochemistry; 2002 Jan; 41(3):760-71. PubMed ID: 11790097 [TBL] [Abstract][Full Text] [Related]
6. Evidence from CD spectra that d(purine).r(pyrimidine) and r(purine).d(pyrimidine) hybrids are in different structural classes. Hung SH; Yu Q; Gray DM; Ratliff RL Nucleic Acids Res; 1994 Oct; 22(20):4326-34. PubMed ID: 7937162 [TBL] [Abstract][Full Text] [Related]
7. The effect of single base-pair mismatches on the duplex stability of d(T-A-T-T-A-A-T-A-T-C-A-A-G-T-T-G) . d(C-A-A-C-T-T-G-A-T-A-T-T-A-A-T-A). Tibanyenda N; De Bruin SH; Haasnoot CA; van der Marel GA; van Boom JH; Hilbers CW Eur J Biochem; 1984 Feb; 139(1):19-27. PubMed ID: 6698006 [TBL] [Abstract][Full Text] [Related]
8. Effect of base pair A/C and G/T mismatches on the thermal stabilities of DNA oligomers that form B-Z junctions. Otokiti EO; Sheardy RD Biochemistry; 1997 Sep; 36(38):11419-27. PubMed ID: 9298961 [TBL] [Abstract][Full Text] [Related]
9. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex. Walter A; Schütz H; Simon H; Birch-Hirschfeld E J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482 [TBL] [Abstract][Full Text] [Related]
10. Effect of base-pair sequence on the conformations and thermally induced transitions in oligodeoxyribonucleotides containing only AT base pairs. Zuo ET; Tanious FA; Wilson WD; Zon G; Tan GS; Wartell RM Biochemistry; 1990 May; 29(18):4446-56. PubMed ID: 2350548 [TBL] [Abstract][Full Text] [Related]
11. Unusual DNA duplex and hairpin motifs. Chou SH; Chin KH; Wang AH Nucleic Acids Res; 2003 May; 31(10):2461-74. PubMed ID: 12736295 [TBL] [Abstract][Full Text] [Related]
12. Unique properties of purine/pyrimidine asymmetric PNA.DNA duplexes: differential stabilization of PNA.DNA duplexes by purines in the PNA strand. Sen A; Nielsen PE Biophys J; 2006 Feb; 90(4):1329-37. PubMed ID: 16326919 [TBL] [Abstract][Full Text] [Related]
13. Formation of sheared G:A base pairs in an RNA duplex modelled after ribozymes, as revealed by NMR. Katahira M; Kanagawa M; Sato H; Uesugi S; Fujii S; Kohno T; Maeda T Nucleic Acids Res; 1994 Jul; 22(14):2752-9. PubMed ID: 7519767 [TBL] [Abstract][Full Text] [Related]
14. A parallel stranded linear DNA duplex incorporating dG.dC base pairs. Rippe K; Ramsing NB; Klement R; Jovin TM J Biomol Struct Dyn; 1990 Jun; 7(6):1199-209. PubMed ID: 2363845 [TBL] [Abstract][Full Text] [Related]
15. Stacked-unstacked equilibrium at the nick site of DNA. Protozanova E; Yakovchuk P; Frank-Kamenetskii MD J Mol Biol; 2004 Sep; 342(3):775-85. PubMed ID: 15342236 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study. Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285 [TBL] [Abstract][Full Text] [Related]
17. Binding of quinomycin antibiotic UK-65,662 to DNA: 1H-n.m.r. studies of drug-induced changes in DNA conformation in complexes with d(ACGT)2 and d(GACGTC)2. Searle MS Biochem J; 1994 Dec; 304 ( Pt 3)(Pt 3):967-79. PubMed ID: 7818504 [TBL] [Abstract][Full Text] [Related]
18. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif. Marfurt J; Parel SP; Leumann CJ Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the thermodynamic stabilities and solution conformations of DNA.RNA hybrids containing purine-rich and pyrimidine-rich strands with DNA and RNA duplexes. Gyi JI; Conn GL; Lane AN; Brown T Biochemistry; 1996 Sep; 35(38):12538-48. PubMed ID: 8823191 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamics of triple helix formation: spectrophotometric studies on the d(A)10.2d(T)10 and d(C+3T4C+3).d(G3A4G3).d(C3T4C3) triple helices. Pilch DS; Brousseau R; Shafer RH Nucleic Acids Res; 1990 Oct; 18(19):5743-50. PubMed ID: 2216768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]