These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III. Arakawa H; Iliakis G Genes (Basel); 2015 Jun; 6(2):385-98. PubMed ID: 26110316 [TBL] [Abstract][Full Text] [Related]
3. The Importance of Poly(ADP-Ribose) Polymerase as a Sensor of Unligated Okazaki Fragments during DNA Replication. Hanzlikova H; Kalasova I; Demin AA; Pennicott LE; Cihlarova Z; Caldecott KW Mol Cell; 2018 Jul; 71(2):319-331.e3. PubMed ID: 29983321 [TBL] [Abstract][Full Text] [Related]
4. DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair. Gao Y; Katyal S; Lee Y; Zhao J; Rehg JE; Russell HR; McKinnon PJ Nature; 2011 Mar; 471(7337):240-4. PubMed ID: 21390131 [TBL] [Abstract][Full Text] [Related]
5. Ligase 1 is a predictor of platinum resistance and its blockade is synthetically lethal in XRCC1 deficient epithelial ovarian cancers. Ali R; Alabdullah M; Algethami M; Alblihy A; Miligy I; Shoqafi A; Mesquita KA; Abdel-Fatah T; Chan SY; Chiang PW; Mongan NP; Rakha EA; Tomkinson AE; Madhusudan S Theranostics; 2021; 11(17):8350-8361. PubMed ID: 34373746 [No Abstract] [Full Text] [Related]
6. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining. Soni A; Siemann M; Grabos M; Murmann T; Pantelias GE; Iliakis G Nucleic Acids Res; 2014 Jun; 42(10):6380-92. PubMed ID: 24748665 [TBL] [Abstract][Full Text] [Related]
7. Redundant but essential functions of PARP1 and PARP2 in DNA ligase I-independent DNA replication. Bhandari SK; Wiest N; Sallmyr A; Du R; Tomkinson AE Nucleic Acids Res; 2024 Sep; 52(17):10341-10354. PubMed ID: 39106163 [TBL] [Abstract][Full Text] [Related]
8. Dispensability of HPF1 for cellular removal of DNA single-strand breaks. Hrychova K; Burdova K; Polackova Z; Giamaki D; Valtorta B; Brazina J; Krejcikova K; Kuttichova B; Caldecott KW; Hanzlikova H Nucleic Acids Res; 2024 Oct; 52(18):10986-10998. PubMed ID: 39162207 [TBL] [Abstract][Full Text] [Related]
9. Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair. Simsek D; Furda A; Gao Y; Artus J; Brunet E; Hadjantonakis AK; Van Houten B; Shuman S; McKinnon PJ; Jasin M Nature; 2011 Mar; 471(7337):245-8. PubMed ID: 21390132 [TBL] [Abstract][Full Text] [Related]
10. The TIMELESS and PARP1 interaction suppresses replication-associated DNA gap accumulation. Saldanha J; Rageul J; Patel JA; Phi AL; Lo N; Park JJ; Kim H Nucleic Acids Res; 2024 Jun; 52(11):6424-6440. PubMed ID: 38801073 [TBL] [Abstract][Full Text] [Related]
11. Unchanged PCNA and DNMT1 dynamics during replication in DNA ligase I-deficient cells but abnormal chromatin levels of non-replicative histone H1. Bhandari SK; Wiest N; Sallmyr A; Du R; Ferry L; Defossez PA; Tomkinson AE Sci Rep; 2023 Mar; 13(1):4363. PubMed ID: 36928068 [TBL] [Abstract][Full Text] [Related]
12. Inactive Parp2 causes Tp53-dependent lethal anemia by blocking replication-associated nick ligation in erythroblasts. Lin X; Gupta D; Vaitsiankova A; Bhandari SK; Leung KSK; Menolfi D; Lee BJ; Russell HR; Gershik S; Huang X; Gu W; McKinnon PJ; Dantzer F; Rothenberg E; Tomkinson AE; Zha S Mol Cell; 2024 Oct; 84(20):3916-3931.e7. PubMed ID: 39383878 [TBL] [Abstract][Full Text] [Related]
13. DNA ligase I is not essential for mammalian cell viability. Han L; Masani S; Hsieh CL; Yu K Cell Rep; 2014 Apr; 7(2):316-320. PubMed ID: 24726358 [TBL] [Abstract][Full Text] [Related]
14. HPF1-dependent histone ADP-ribosylation triggers chromatin relaxation to promote the recruitment of repair factors at sites of DNA damage. Smith R; Zentout S; Rother M; Bigot N; Chapuis C; Mihuț A; Zobel FF; Ahel I; van Attikum H; Timinszky G; Huet S Nat Struct Mol Biol; 2023 May; 30(5):678-691. PubMed ID: 37106138 [TBL] [Abstract][Full Text] [Related]
15. Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder. Czarny P; Kwiatkowski D; Toma M; Gałecki P; Orzechowska A; Bobińska K; Bielecka-Kowalska A; Szemraj J; Berk M; Anderson G; Śliwiński T Med Sci Monit; 2016 Nov; 22():4455-4474. PubMed ID: 27866211 [TBL] [Abstract][Full Text] [Related]
16. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. Simsek D; Brunet E; Wong SY; Katyal S; Gao Y; McKinnon PJ; Lou J; Zhang L; Li J; Rebar EJ; Gregory PD; Holmes MC; Jasin M PLoS Genet; 2011 Jun; 7(6):e1002080. PubMed ID: 21655080 [TBL] [Abstract][Full Text] [Related]
17. Human apurinic/apyrimidinic endonuclease 1 is modified in vitro by poly(ADP-ribose) polymerase 1 under control of the structure of damaged DNA. Moor NA; Vasil'eva IA; Kuznetsov NA; Lavrik OI Biochimie; 2020 Jan; 168():144-155. PubMed ID: 31668992 [TBL] [Abstract][Full Text] [Related]
18. Kinetic analyses of single-stranded break repair by human DNA ligase III isoforms reveal biochemical differences from DNA ligase I. McNally JR; O'Brien PJ J Biol Chem; 2017 Sep; 292(38):15870-15879. PubMed ID: 28751376 [TBL] [Abstract][Full Text] [Related]
19. DNA ligases I and III cooperate in alternative non-homologous end-joining in vertebrates. Paul K; Wang M; Mladenov E; Bencsik-Theilen A; Bednar T; Wu W; Arakawa H; Iliakis G PLoS One; 2013; 8(3):e59505. PubMed ID: 23555685 [TBL] [Abstract][Full Text] [Related]
20. Human DNA ligases in replication and repair. Sallmyr A; Rashid I; Bhandari SK; Naila T; Tomkinson AE DNA Repair (Amst); 2020 Sep; 93():102908. PubMed ID: 33087274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]