These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 33872376)
21. Disconnecting XRCC1 and DNA ligase III. Katyal S; McKinnon PJ Cell Cycle; 2011 Jul; 10(14):2269-75. PubMed ID: 21636980 [TBL] [Abstract][Full Text] [Related]
22. Base excision repair proteins are required for integrin-mediated suppression of bleomycin-induced DNA breakage in murine lung endothelial cells. Rose JL; Reeves KC; Likhotvorik RI; Hoyt DG J Pharmacol Exp Ther; 2007 Apr; 321(1):318-26. PubMed ID: 17202402 [TBL] [Abstract][Full Text] [Related]
23. Role of Oxidation of XRCC1 Protein in Regulation of Mammalian DNA Repair Process. Vasil'eva IA; Moor NA; Lavrik OI Dokl Biochem Biophys; 2019 Nov; 489(1):357-361. PubMed ID: 32130599 [TBL] [Abstract][Full Text] [Related]
24. The CSB chromatin remodeler regulates PARP1- and PARP2-mediated single-strand break repair at actively transcribed DNA regions. Bilkis R; Lake RJ; Cooper KL; Tomkinson A; Fan HY Nucleic Acids Res; 2023 Aug; 51(14):7342-7356. PubMed ID: 37326017 [TBL] [Abstract][Full Text] [Related]
25. Functional redundancy between DNA ligases I and III in DNA replication in vertebrate cells. Arakawa H; Bednar T; Wang M; Paul K; Mladenov E; Bencsik-Theilen AA; Iliakis G Nucleic Acids Res; 2012 Mar; 40(6):2599-610. PubMed ID: 22127868 [TBL] [Abstract][Full Text] [Related]
26. Structure and function of mammalian DNA ligases. Tomkinson AE; Mackey ZB Mutat Res; 1998 Feb; 407(1):1-9. PubMed ID: 9539976 [TBL] [Abstract][Full Text] [Related]
27. Human DNA ligases I and III have stand-alone end-joining capability, but differ in ligation efficiency and specificity. McNally JR; Ames AM; Admiraal SJ; O'Brien PJ Nucleic Acids Res; 2023 Jan; 51(2):796-805. PubMed ID: 36625284 [TBL] [Abstract][Full Text] [Related]
28. Mechanism of human Lig1 regulation by PCNA in Okazaki fragment sealing. Blair K; Tehseen M; Raducanu VS; Shahid T; Lancey C; Rashid F; Crehuet R; Hamdan SM; De Biasio A Nat Commun; 2022 Dec; 13(1):7833. PubMed ID: 36539424 [TBL] [Abstract][Full Text] [Related]
29. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. Audebert M; Salles B; Calsou P J Biol Chem; 2004 Dec; 279(53):55117-26. PubMed ID: 15498778 [TBL] [Abstract][Full Text] [Related]
30. Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair. Leppard JB; Dong Z; Mackey ZB; Tomkinson AE Mol Cell Biol; 2003 Aug; 23(16):5919-27. PubMed ID: 12897160 [TBL] [Abstract][Full Text] [Related]
31. A quantitative assay reveals ligand specificity of the DNA scaffold repair protein XRCC1 and efficient disassembly of complexes of XRCC1 and the poly(ADP-ribose) polymerase 1 by poly(ADP-ribose) glycohydrolase. Kim IK; Stegeman RA; Brosey CA; Ellenberger T J Biol Chem; 2015 Feb; 290(6):3775-83. PubMed ID: 25477519 [TBL] [Abstract][Full Text] [Related]
32. Marked contribution of alternative end-joining to chromosome-translocation-formation by stochastically induced DNA double-strand-breaks in G2-phase human cells. Soni A; Siemann M; Pantelias GE; Iliakis G Mutat Res Genet Toxicol Environ Mutagen; 2015 Nov; 793():2-8. PubMed ID: 26520366 [TBL] [Abstract][Full Text] [Related]
33. HPF1 remodels the active site of PARP1 to enable the serine ADP-ribosylation of histones. Sun FH; Zhao P; Zhang N; Kong LL; Wong CCL; Yun CH Nat Commun; 2021 Feb; 12(1):1028. PubMed ID: 33589610 [TBL] [Abstract][Full Text] [Related]
34. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Masson M; Niedergang C; Schreiber V; Muller S; Menissier-de Murcia J; de Murcia G Mol Cell Biol; 1998 Jun; 18(6):3563-71. PubMed ID: 9584196 [TBL] [Abstract][Full Text] [Related]
35. Structures of LIG1 provide a mechanistic basis for understanding a lack of sugar discrimination against a ribonucleotide at the 3'-end of nick DNA. Balu KE; Gulkis M; Almohdar D; Çağlayan M J Biol Chem; 2024 May; 300(5):107216. PubMed ID: 38522520 [TBL] [Abstract][Full Text] [Related]
36. High-fidelity DNA ligation enforces accurate Okazaki fragment maturation during DNA replication. Williams JS; Tumbale PP; Arana ME; Rana JA; Williams RS; Kunkel TA Nat Commun; 2021 Jan; 12(1):482. PubMed ID: 33473124 [TBL] [Abstract][Full Text] [Related]
38. Ligase I and ligase III mediate the DNA double-strand break ligation in alternative end-joining. Lu G; Duan J; Shu S; Wang X; Gao L; Guo J; Zhang Y Proc Natl Acad Sci U S A; 2016 Feb; 113(5):1256-60. PubMed ID: 26787905 [TBL] [Abstract][Full Text] [Related]
39. Functional Roles of PARP2 in Assembling Protein-Protein Complexes Involved in Base Excision DNA Repair. Vasil'eva I; Moor N; Anarbaev R; Kutuzov M; Lavrik O Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925170 [TBL] [Abstract][Full Text] [Related]
40. CDK-dependent phosphorylation regulates PNKP function in DNA replication. Mashayekhi F; Zeinali E; Ganje C; Fanta M; Li L; Godbout R; Weinfeld M; Ismail IH J Biol Chem; 2024 Nov; 300(11):107880. PubMed ID: 39395804 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]