BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 33872797)

  • 21. The Combination of
    Wang N; Wang H; Pan Q; Kang J; Liang Z; Zhang R
    Oxid Med Cell Longev; 2021; 2021():7158444. PubMed ID: 34887998
    [No Abstract]   [Full Text] [Related]  

  • 22. Enhancing Rab7 Activity by Inhibiting TBC1D5 Expression Improves Mitophagy in Alzheimer's Disease Models.
    Liang X; Wang Y; Li S; Fan J; Zhou F; Li X; Li S; Li Y
    J Alzheimers Dis; 2024; 100(1):279-296. PubMed ID: 38848175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Role of Mitochondrial Impairment in Alzheimer´s Disease Neurodegeneration: The Tau Connection.
    Quntanilla RA; Tapia-Monsalves C
    Curr Neuropharmacol; 2020; 18(11):1076-1091. PubMed ID: 32448104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. APP/PS1 mice overexpressing SREBP-2 exhibit combined Aβ accumulation and tau pathology underlying Alzheimer's disease.
    Barbero-Camps E; Fernández A; Martínez L; Fernández-Checa JC; Colell A
    Hum Mol Genet; 2013 Sep; 22(17):3460-76. PubMed ID: 23648430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Autophagic dysfunction in Alzheimer's disease: Cellular and molecular mechanistic approaches to halt Alzheimer's pathogenesis.
    Uddin MS; Mamun AA; Labu ZK; Hidalgo-Lanussa O; Barreto GE; Ashraf GM
    J Cell Physiol; 2019 Jun; 234(6):8094-8112. PubMed ID: 30362531
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondria: the common upstream driver of amyloid-β and tau pathology in Alzheimer's disease.
    Silva DF; Esteves AR; Oliveira CR; Cardoso SM
    Curr Alzheimer Res; 2011 Aug; 8(5):563-72. PubMed ID: 21244356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cholesterol alters mitophagy by impairing optineurin recruitment and lysosomal clearance in Alzheimer's disease.
    Roca-Agujetas V; Barbero-Camps E; de Dios C; Podlesniy P; Abadin X; Morales A; Marí M; Trullàs R; Colell A
    Mol Neurodegener; 2021 Mar; 16(1):15. PubMed ID: 33685483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of the superoxide dismutase/catalase mimetic EUK-207 in a mouse model of Alzheimer's disease: protection against and interruption of progression of amyloid and tau pathology and cognitive decline.
    Clausen A; Xu X; Bi X; Baudry M
    J Alzheimers Dis; 2012; 30(1):183-208. PubMed ID: 22406441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting dynamin-related protein-1 as a potential therapeutic approach for mitochondrial dysfunction in Alzheimer's disease.
    Bhatti JS; Kaur S; Mishra J; Dibbanti H; Singh A; Reddy AP; Bhatti GK; Reddy PH
    Biochim Biophys Acta Mol Basis Dis; 2023 Oct; 1869(7):166798. PubMed ID: 37392948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synaptic basis of Alzheimer's disease: Focus on synaptic amyloid beta, P-tau and mitochondria.
    John A; Reddy PH
    Ageing Res Rev; 2021 Jan; 65():101208. PubMed ID: 33157321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of mitophagy in the regulation of mitochondrial energetic status in neurons.
    Han S; Zhang M; Jeong YY; Margolis DJ; Cai Q
    Autophagy; 2021 Dec; 17(12):4182-4201. PubMed ID: 33757395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of cell type-specific mitochondrial dysfunction in the pathogenesis of Alzheimer's disease.
    Kim DK; Mook-Jung I
    BMB Rep; 2019 Dec; 52(12):679-688. PubMed ID: 31722781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic and therapeutic role of Drp1 in the pathogenesis of Alzheimer's disease.
    Bera A; Lavanya G; Reshmi R; Dev K; Kumar R
    Eur J Neurosci; 2022 Nov; 56(9):5516-5531. PubMed ID: 35078269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction between NH(2)-tau fragment and Aβ in Alzheimer's disease mitochondria contributes to the synaptic deterioration.
    Amadoro G; Corsetti V; Atlante A; Florenzano F; Capsoni S; Bussani R; Mercanti D; Calissano P
    Neurobiol Aging; 2012 Apr; 33(4):833.e1-25. PubMed ID: 21958963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alzheimer's disease as oligomeropathy.
    Ono K
    Neurochem Int; 2018 Oct; 119():57-70. PubMed ID: 28821400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitophagy enhancers against phosphorylated Tau-induced mitochondrial and synaptic toxicities in Alzheimer disease.
    Kshirsagar S; Sawant N; Morton H; Reddy AP; Reddy PH
    Pharmacol Res; 2021 Dec; 174():105973. PubMed ID: 34763094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tau accumulation impairs mitophagy via increasing mitochondrial membrane potential and reducing mitochondrial Parkin.
    Hu Y; Li XC; Wang ZH; Luo Y; Zhang X; Liu XP; Feng Q; Wang Q; Yue Z; Chen Z; Ye K; Wang JZ; Liu GP
    Oncotarget; 2016 Apr; 7(14):17356-68. PubMed ID: 26943044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dysfunctional Mitochondria and Mitophagy as Drivers of Alzheimer's Disease Pathogenesis.
    Chakravorty A; Jetto CT; Manjithaya R
    Front Aging Neurosci; 2019; 11():311. PubMed ID: 31824296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of WAVE accumulation in Abeta/APP pathology-dependent tangle modification in Alzheimer's disease.
    Takata K; Kitamura Y; Nakata Y; Matsuoka Y; Tomimoto H; Taniguchi T; Shimohama S
    Am J Pathol; 2009 Jul; 175(1):17-24. PubMed ID: 19497998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Soluble Conformers of Aβ and Tau Alter Selective Proteins Governing Axonal Transport.
    Sherman MA; LaCroix M; Amar F; Larson ME; Forster C; Aguzzi A; Bennett DA; Ramsden M; Lesné SE
    J Neurosci; 2016 Sep; 36(37):9647-58. PubMed ID: 27629715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.