These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 33872975)
1. Fast at-line characterization of solid organic waste: Comparing analytical performance of different compact near infrared spectroscopic systems with different measurement configurations. Mallet A; Pérémé M; Awhangbo L; Charnier C; Roger JM; Steyer JP; Latrille É; Bendoula R Waste Manag; 2021 May; 126():664-673. PubMed ID: 33872975 [TBL] [Abstract][Full Text] [Related]
2. Fast characterization of solid organic waste content with near infrared spectroscopy in anaerobic digestion. Charnier C; Latrille E; Jimenez J; Lemoine M; Boulet JC; Miroux J; Steyer JP Waste Manag; 2017 Jan; 59():140-148. PubMed ID: 27816468 [TBL] [Abstract][Full Text] [Related]
3. On-site substrate characterization in the anaerobic digestion context: A dataset of near infrared spectra acquired with four different optical systems on freeze-dried and ground organic waste. Pérémé M; Mallet A; Awhangbo L; Charnier C; Roger JM; Steyer JP; Latrille É; Bendoula R Data Brief; 2021 Jun; 36():107126. PubMed ID: 34095376 [TBL] [Abstract][Full Text] [Related]
4. Fast prediction of organic wastes methane potential by near infrared reflectance spectroscopy: A successful tool for farm-scale biogas plant monitoring. Mortreuil P; Baggio S; Lagnet C; Schraauwers B; Monlau F Waste Manag Res; 2018 Sep; 36(9):800-809. PubMed ID: 29921175 [TBL] [Abstract][Full Text] [Related]
5. Rapid biochemical methane potential prediction of urban organic waste with near-infrared reflectance spectroscopy. Fitamo T; Triolo JM; Boldrin A; Scheutz C Water Res; 2017 Aug; 119():242-251. PubMed ID: 28467919 [TBL] [Abstract][Full Text] [Related]
6. First step towards a fast analytical method for the determination of Biochemical Methane Potential of solid wastes by near infrared spectroscopy. Lesteur M; Latrille E; Maurel VB; Roger JM; Gonzalez C; Junqua G; Steyer JP Bioresour Technol; 2011 Feb; 102(3):2280-8. PubMed ID: 21055927 [TBL] [Abstract][Full Text] [Related]
7. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
8. Fast and robust NIRS-based characterization of raw organic waste: Using non-linear methods to handle water effects. Mallet A; Charnier C; Latrille É; Bendoula R; Roger JM; Steyer JP Water Res; 2022 Dec; 227():119308. PubMed ID: 36371919 [TBL] [Abstract][Full Text] [Related]
10. Prediction of biochemical methane potential of urban organic waste using Fourier transform mid-infrared photoacoustic spectroscopy and multivariate analysis. Huang J; Bekiaris G; Fitamo T; Scheutz C; Bruun S Sci Total Environ; 2021 Oct; 790():147959. PubMed ID: 34102444 [TBL] [Abstract][Full Text] [Related]
11. Anaerobic digestion of sewage sludge with grease trap sludge and municipal solid waste as co-substrates. Grosser A; Neczaj E; Singh BR; Almås ÅR; Brattebø H; Kacprzak M Environ Res; 2017 May; 155():249-260. PubMed ID: 28237904 [TBL] [Abstract][Full Text] [Related]
12. Effect of organic loading rate during anaerobic digestion of municipal solid waste. Dhar H; Kumar P; Kumar S; Mukherjee S; Vaidya AN Bioresour Technol; 2016 Oct; 217():56-61. PubMed ID: 26733440 [TBL] [Abstract][Full Text] [Related]
13. Biochemical methane potential (BMP) of artichoke waste: the inoculum effect. Fabbri A; Serranti S; Bonifazi G Waste Manag Res; 2014 Mar; 32(3):207-14. PubMed ID: 24616343 [TBL] [Abstract][Full Text] [Related]
14. Fast ADM1 implementation for the optimization of feeding strategy using near infrared spectroscopy. Charnier C; Latrille E; Jimenez J; Torrijos M; Sousbie P; Miroux J; Steyer JP Water Res; 2017 Oct; 122():27-35. PubMed ID: 28587913 [TBL] [Abstract][Full Text] [Related]
15. Biochemical methane potential tests of different autoclaved and microwaved lignocellulosic organic fractions of municipal solid waste. Pecorini I; Baldi F; Carnevale EA; Corti A Waste Manag; 2016 Oct; 56():143-50. PubMed ID: 27425862 [TBL] [Abstract][Full Text] [Related]
16. Co-treatment of fruit and vegetable waste in sludge digesters: Chemical and spectroscopic investigation by fluorescence and Fourier transform infrared spectroscopy. Provenzano MR; Cavallo O; Malerba AD; Di Maria F; Cucina M; Massaccesi L; Gigliotti G Waste Manag; 2016 Apr; 50():283-9. PubMed ID: 26946935 [TBL] [Abstract][Full Text] [Related]
17. Near-Infrared Broadband Cavity-Enhanced Spectroscopic Multigas Sensor Using a 1650 nm Light Emitting Diode. Zheng K; Zheng C; Ma N; Liu Z; Yang Y; Zhang Y; Wang Y; Tittel FK ACS Sens; 2019 Jul; 4(7):1899-1908. PubMed ID: 31184106 [TBL] [Abstract][Full Text] [Related]
18. Rapid characterization of sulfur and phosphorus in organic waste by near infrared spectroscopy. Awhangbo L; Severac M; Charnier C; Latrille E; Steyer JP Waste Manag; 2024 Mar; 176():11-19. PubMed ID: 38246073 [TBL] [Abstract][Full Text] [Related]
19. Enhanced biogas production by anaerobic co-digestion from a trinary mix substrate over a binary mix substrate. Ara E; Sartaj M; Kennedy K Waste Manag Res; 2015 Jun; 33(6):578-87. PubMed ID: 25964293 [TBL] [Abstract][Full Text] [Related]
20. Biochemical methane potential of fractions of organic matter extracted from a municipal solid waste leachate: Impact of their hydrophobic character. Baccot C; Pallier V; Feuillade-Cathalifaud G Waste Manag; 2017 May; 63():257-266. PubMed ID: 27931936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]