BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 33873051)

  • 1. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation.
    DiPrimio DJ; Holland PL
    J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
    Mirts EN; Bhagi-Damodaran A; Lu Y
    Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications.
    Himiyama T; Okamoto Y
    Molecules; 2020 Jun; 25(13):. PubMed ID: 32629938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
    Oohora K; Onoda A; Hayashi T
    Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters.
    Lin YW
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-based models offer mechanistic insight into complex nickel metalloenzymes.
    Treviño RE; Shafaat HS
    Curr Opin Chem Biol; 2022 Apr; 67():102110. PubMed ID: 35101820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LmrR: A Privileged Scaffold for Artificial Metalloenzymes.
    Roelfes G
    Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iridium(III) polypyridine artificial metalloenzymes with tunable photophysical properties: a new platform for visible light photocatalysis in aqueous solution.
    Liu B; Zubi YS; Lewis JC
    Dalton Trans; 2023 Apr; 52(16):5034-5038. PubMed ID: 37060130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Heteronuclear Metalloenzymes.
    Bhagi-Damodaran A; Hosseinzadeh P; Mirts E; Reed J; Petrik ID; Lu Y
    Methods Enzymol; 2016; 580():501-37. PubMed ID: 27586347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myoglobins engineered with artificial cofactors serve as artificial metalloenzymes and models of natural enzymes.
    Oohora K; Hayashi T
    Dalton Trans; 2021 Feb; 50(6):1940-1949. PubMed ID: 33433532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum chemical studies of mechanisms for metalloenzymes.
    Blomberg MR; Borowski T; Himo F; Liao RZ; Siegbahn PE
    Chem Rev; 2014 Apr; 114(7):3601-58. PubMed ID: 24410477
    [No Abstract]   [Full Text] [Related]  

  • 13. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic activity mastered by altering metal coordination spheres.
    Moura I; Pauleta SR; Moura JJ
    J Biol Inorg Chem; 2008 Nov; 13(8):1185-95. PubMed ID: 18719950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies.
    Schwizer F; Okamoto Y; Heinisch T; Gu Y; Pellizzoni MM; Lebrun V; Reuter R; Köhler V; Lewis JC; Ward TR
    Chem Rev; 2018 Jan; 118(1):142-231. PubMed ID: 28714313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic Metallopolymers from [2Fe-2S] Clusters: Artificial Metalloenzymes for Hydrogen Production.
    Karayilan M; Brezinski WP; Clary KE; Lichtenberger DL; Glass RS; Pyun J
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7537-7550. PubMed ID: 30628136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemogenetic protein engineering: an efficient tool for the optimization of artificial metalloenzymes.
    Pordea A; Ward TR
    Chem Commun (Camb); 2008 Sep; (36):4239-49. PubMed ID: 18802535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogenases.
    Sickerman NS; Hu Y
    Methods Mol Biol; 2019; 1876():65-88. PubMed ID: 30317475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere.
    Van Stappen C; Deng Y; Liu Y; Heidari H; Wang JX; Zhou Y; Ledray AP; Lu Y
    Chem Rev; 2022 Jul; 122(14):11974-12045. PubMed ID: 35816578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed evolution of artificial metalloenzymes for in vivo metathesis.
    Jeschek M; Reuter R; Heinisch T; Trindler C; Klehr J; Panke S; Ward TR
    Nature; 2016 Sep; 537(7622):661-665. PubMed ID: 27571282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.