BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 33873051)

  • 21. Emerging artificial metalloenzymes for asymmetric hydrogenation reactions.
    Goralski ST; Rose MJ
    Curr Opin Chem Biol; 2022 Feb; 66():102096. PubMed ID: 34879303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Small-Molecule Tunnels in Metalloenzymes Viewed as Extensions of the Active Site.
    Banerjee R; Lipscomb JD
    Acc Chem Res; 2021 May; 54(9):2185-2195. PubMed ID: 33886257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal-metal bonds in biology.
    Lindahl PA
    J Inorg Biochem; 2012 Jan; 106(1):172-8. PubMed ID: 22119810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Modeling for Artificial Metalloenzyme Design and Optimization.
    Alonso-Cotchico L; Rodrı Guez-Guerra J; Lledós A; Maréchal JD
    Acc Chem Res; 2020 Apr; 53(4):896-905. PubMed ID: 32233391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Artificial metalloenzymes constructed from hierarchically-assembled proteins.
    Ueno T; Tabe H; Tanaka Y
    Chem Asian J; 2013 Aug; 8(8):1646-60. PubMed ID: 23704077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards the Evolution of Artificial Metalloenzymes-A Protein Engineer's Perspective.
    Markel U; Sauer DF; Schiffels J; Okuda J; Schwaneberg U
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4454-4464. PubMed ID: 30431222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a Naïve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation.
    Biggs GS; Klein OJ; Maslen SL; Skehel JM; Rutherford TJ; Freund SMV; Hollfelder F; Boss SR; Barker PD
    Angew Chem Int Ed Engl; 2021 May; 60(19):10919-10927. PubMed ID: 33616271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.
    Key HM; Dydio P; Clark DS; Hartwig JF
    Nature; 2016 Jun; 534(7608):534-7. PubMed ID: 27296224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes.
    Adachi T; Harada A; Yamaguchi H
    Sci Rep; 2019 Sep; 9(1):13551. PubMed ID: 31537832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of an infrared spectroscopic approach for studying metalloenzyme active site chemistry under direct electrochemical control.
    Healy AJ; Reeve HA; Vincent KA
    Faraday Discuss; 2011; 148():345-57; discussion 421-41. PubMed ID: 21322492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidoreductases and metal cofactors in the functioning of the earth.
    Hay Mele B; Monticelli M; Leone S; Bastoni D; Barosa B; Cascone M; Migliaccio F; Montemagno F; Ricciardelli A; Tonietti L; Rotundi A; Cordone A; Giovannelli D
    Essays Biochem; 2023 Aug; 67(4):653-670. PubMed ID: 37503682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New metal cofactors and recent metallocofactor insights.
    Hausinger RP
    Curr Opin Struct Biol; 2019 Dec; 59():1-8. PubMed ID: 30711735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional metalloenzymes based on myoglobin and neuroglobin that exploit covalent interactions.
    Lin YW
    J Inorg Biochem; 2024 Aug; 257():112595. PubMed ID: 38759262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase.
    Stripp ST; Duffus BR; Fourmond V; Léger C; Leimkühler S; Hirota S; Hu Y; Jasniewski A; Ogata H; Ribbe MW
    Chem Rev; 2022 Jul; 122(14):11900-11973. PubMed ID: 35849738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design Strategies for Redox Active Metalloenzymes: Applications in Hydrogen Production.
    Alcala-Torano R; Sommer DJ; Bahrami Dizicheh Z; Ghirlanda G
    Methods Enzymol; 2016; 580():389-416. PubMed ID: 27586342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions.
    Hirota S; Lin YW
    J Biol Inorg Chem; 2018 Jan; 23(1):7-25. PubMed ID: 29218629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into metalloenzyme microenvironments: biomimetic metal complexes with a functional second coordination sphere.
    Zhao M; Wang HB; Ji LN; Mao ZW
    Chem Soc Rev; 2013 Nov; 42(21):8360-75. PubMed ID: 23881282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From enzyme maturation to synthetic chemistry: the case of hydrogenases.
    Artero V; Berggren G; Atta M; Caserta G; Roy S; Pecqueur L; Fontecave M
    Acc Chem Res; 2015 Aug; 48(8):2380-7. PubMed ID: 26165393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis.
    Klein AS; Zeymer C
    Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 33635315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.