These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 33873117)

  • 21. Comparison of Concurrent and Asynchronous Running Kinematics and Kinetics From Marker-Based and Markerless Motion Capture Under Varying Clothing Conditions.
    Kanko RM; Outerleys JB; Laende EK; Selbie WS; Deluzio KJ
    J Appl Biomech; 2024 Apr; 40(2):129-137. PubMed ID: 38237574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reliability of a markerless motion capture system to measure the trunk, hip and knee angle during walking on a flatland and a treadmill.
    Tamura H; Tanaka R; Kawanishi H
    J Biomech; 2020 Aug; 109():109929. PubMed ID: 32807306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reliability and minimal detectable change of gait kinematics in people who are hypermobile.
    Bates AV; McGregor AH; Alexander CM
    Gait Posture; 2016 Feb; 44():37-42. PubMed ID: 27004630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics.
    Washabaugh EP; Shanmugam TA; Ranganathan R; Krishnan C
    Gait Posture; 2022 Sep; 97():188-195. PubMed ID: 35988434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinematics and temporospatial parameters during gait from inertial motion capture in adults with and without HIV: a validity and reliability study.
    Berner K; Cockcroft J; Louw Q
    Biomed Eng Online; 2020 Jul; 19(1):57. PubMed ID: 32709239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Concurrent validity and within-session reliability of gait kinematics measured using an inertial motion capture system with repeated calibration.
    Berner K; Cockcroft J; Morris LD; Louw Q
    J Bodyw Mov Ther; 2020 Oct; 24(4):251-260. PubMed ID: 33218520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repeatability of skin-markers based kinematic measures from a multi-segment foot model in walking and running.
    Matias AB; Caravaggi P; Leardini A; Taddei UT; Ortolani M; Sacco I
    J Biomech; 2020 Sep; 110():109983. PubMed ID: 32827772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Concurrent validity of artificial intelligence-based markerless motion capture for over-ground gait analysis: A study of spatiotemporal parameters.
    Ripic Z; Signorile JF; Kuenze C; Eltoukhy M
    J Biomech; 2022 Oct; 143():111278. PubMed ID: 36063770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements.
    Song K; Hullfish TJ; Silva RS; Silbernagel KG; Baxter JR
    bioRxiv; 2023 Feb; ():. PubMed ID: 36865211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis.
    Scataglini S; Abts E; Van Bocxlaer C; Van den Bussche M; Meletani S; Truijen S
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane.
    Sandau M; Koblauch H; Moeslund TB; Aanæs H; Alkjær T; Simonsen EB
    Med Eng Phys; 2014 Sep; 36(9):1168-75. PubMed ID: 25085672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Markerless vs. Marker-Based Gait Analysis: A Proof of Concept Study.
    Moro M; Marchesi G; Hesse F; Odone F; Casadio M
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The measurement of in vivo joint angles during a squat using a single camera markerless motion capture system as compared to a marker based system.
    Schmitz A; Ye M; Boggess G; Shapiro R; Yang R; Noehren B
    Gait Posture; 2015 Feb; 41(2):694-8. PubMed ID: 25708833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Examination of 2D frontal and sagittal markerless motion capture: Implications for markerless applications.
    Wade L; Needham L; Evans M; McGuigan P; Colyer S; Cosker D; Bilzon J
    PLoS One; 2023; 18(11):e0293917. PubMed ID: 37943887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinematic analysis of gait in an underwater treadmill using land-based Vicon T 40s motion capture cameras arranged externally.
    Raghu SL; Conners RT; Kang CK; Landrum DB; Whitehead PN
    J Biomech; 2021 Jul; 124():110553. PubMed ID: 34161842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of lower limb and trunk kinematics between markerless and marker-based motion capture systems.
    Perrott MA; Pizzari T; Cook J; McClelland JA
    Gait Posture; 2017 Feb; 52():57-61. PubMed ID: 27871019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Moving outside the lab: Markerless motion capture accurately quantifies sagittal plane kinematics during the vertical jump.
    Drazan JF; Phillips WT; Seethapathi N; Hullfish TJ; Baxter JR
    J Biomech; 2021 Aug; 125():110547. PubMed ID: 34175570
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of 3D Markerless Motion Capture System Accuracy during Skate Skiing on a Treadmill.
    Torvinen P; Ruotsalainen KS; Zhao S; Cronin N; Ohtonen O; Linnamo V
    Bioengineering (Basel); 2024 Jan; 11(2):. PubMed ID: 38391622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accuracy of a markerless motion capture system in estimating upper extremity kinematics during boxing.
    Lahkar BK; Muller A; Dumas R; Reveret L; Robert T
    Front Sports Act Living; 2022; 4():939980. PubMed ID: 35958668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accuracy of image data stream of a markerless motion capture system in determining the local dynamic stability and joint kinematics of human gait.
    Chakraborty S; Nandy A; Yamaguchi T; Bonnet V; Venture G
    J Biomech; 2020 May; 104():109718. PubMed ID: 32151378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.