These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 33873117)

  • 41. Repeatability of a new protocol for gait analysis in adult subjects.
    Manca M; Leardini A; Cavazza S; Ferraresi G; Marchi P; Zanaga E; Benedetti MG
    Gait Posture; 2010 Jun; 32(2):282-4. PubMed ID: 20541414
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reliability and validity of the Kinect V2 for the assessment of lower extremity rehabilitation exercises.
    Wochatz M; Tilgner N; Mueller S; Rabe S; Eichler S; John M; Völler H; Mayer F
    Gait Posture; 2019 May; 70():330-335. PubMed ID: 30947108
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Healthcare applications of single camera markerless motion capture: a scoping review.
    Scott B; Seyres M; Philp F; Chadwick EK; Blana D
    PeerJ; 2022; 10():e13517. PubMed ID: 35642200
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reliability of 3D gait data across multiple laboratories.
    Kaufman K; Miller E; Kingsbury T; Russell Esposito E; Wolf E; Wilken J; Wyatt M
    Gait Posture; 2016 Sep; 49():375-381. PubMed ID: 27497755
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Amsterdam Foot Model: a clinically informed multi-segment foot model developed to minimize measurement errors in foot kinematics.
    Schallig W; van den Noort JC; Piening M; Streekstra GJ; Maas M; van der Krogt MM; Harlaar J
    J Foot Ankle Res; 2022 Jun; 15(1):46. PubMed ID: 35668453
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of a novel deep learning-based marker-less motion capture system for gait study.
    Vafadar S; Skalli W; Bonnet-Lebrun A; Assi A; Gajny L
    Gait Posture; 2022 May; 94():138-143. PubMed ID: 35306382
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity.
    Al-Amri M; Nicholas K; Button K; Sparkes V; Sheeran L; Davies JL
    Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495600
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Shape-model scaled gait models can neglect segment markers without consequential change to inverse kinematics results.
    Bakke D; Besier T
    J Biomech; 2022 May; 137():111086. PubMed ID: 35436755
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Shape model constrained scaling improves repeatability of gait data.
    Bakke D; Besier T
    J Biomech; 2020 Jun; 107():109838. PubMed ID: 32517858
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of knee marker misplacement on gait kinematics of children with cerebral palsy using the Conventional Gait Model-A sensitivity study.
    Fonseca M; Gasparutto X; Leboeuf F; Dumas R; Armand S
    PLoS One; 2020; 15(4):e0232064. PubMed ID: 32330162
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reliability of Kinovea
    Fernández-González P; Koutsou A; Cuesta-Gómez A; Carratalá-Tejada M; Miangolarra-Page JC; Molina-Rueda F
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32498380
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An alternative technical marker set for the pelvis is more repeatable than the standard pelvic marker set.
    Borhani M; McGregor AH; Bull AM
    Gait Posture; 2013 Sep; 38(4):1032-7. PubMed ID: 23790572
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Validity of time series kinematical data as measured by a markerless motion capture system on a flatland for gait assessment.
    Tanaka R; Takimoto H; Yamasaki T; Higashi A
    J Biomech; 2018 Apr; 71():281-285. PubMed ID: 29475751
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Repeatability of 3D gait kinematics obtained from an electromagnetic tracking system during treadmill locomotion.
    Mills PM; Morrison S; Lloyd DG; Barrett RS
    J Biomech; 2007; 40(7):1504-11. PubMed ID: 16919639
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Motion based markerless gait analysis using standard events of gait and ensemble Kalman filtering.
    Vishnoi N; Mitra A; Duric Z; Gerber NL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2512-6. PubMed ID: 25570501
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modified conventional gait model versus cluster tracking: Test-retest reliability, agreement and impact of inverse kinematics with joint constraints on kinematic and kinetic data.
    Mentiplay BF; Clark RA
    Gait Posture; 2018 Jul; 64():75-83. PubMed ID: 29879631
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Estimation and validation of temporal gait features using a markerless 2D video system.
    Verlekar TT; De Vroey H; Claeys K; Hallez H; Soares LD; Correia PL
    Comput Methods Programs Biomed; 2019 Jul; 175():45-51. PubMed ID: 31104714
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Towards the Use of 2D Video-Based Markerless Motion Capture to Measure and Parameterize Movement During Functional Capacity Evaluation.
    Remedios SM; Fischer SL
    J Occup Rehabil; 2021 Dec; 31(4):754-767. PubMed ID: 34515942
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two-dimensional video-based analysis of human gait using pose estimation.
    Stenum J; Rossi C; Roemmich RT
    PLoS Comput Biol; 2021 Apr; 17(4):e1008935. PubMed ID: 33891585
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reliability and sources of variability of 3D kinematics and electromyography measurements to assess newly-acquired gait in toddlers with typical development and unilateral cerebral palsy.
    Grigoriu AI; Brochard S; Sangeux M; Padure L; Lempereur M
    J Electromyogr Kinesiol; 2021 Jun; 58():102544. PubMed ID: 33761385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.